
Python
The Complete Manual

The essential handbook for Python users

NEW

Start
coding
today!

10
0

%
 U

N
O

F
F

IC
IA

L

D
ig

it
a
l

E
d

it
io

n
T

H
IR

T
E

E
N

T
H

E
D

IT
IO

N

Welcome to

Python is a versatile language and its rise in popularity is

certainly no surprise. Its similarity to everyday language has

made it a perfect companion for the Raspberry Pi, which

is often a first step into practical programming. But don’t

be fooled by its beginner-friendly credentials – Python has

plenty of more advanced functions. In this new edition,

you will learn how to program in Python, discover amazing

projects to improve your understanding, and find ways to

use Python to enhance your experience of computing. You’ll

also create fun projects including programming a Space

Invaders clone and teaching your Raspberry Pi to multi-task.

Let’s get coding!

Python
The Complete Manual

Python
The Complete Manual

Future PLC Quay House, The Ambury, Bath, BA1 1UA

Editorial

Compiled by Katharine Marsh & Perry Wardell-Wicks

Senior Art Editor Andy Downes

Head of Art & Design Greg Whitaker

Editorial Director Jon White

Photography

All copyrights and trademarks are recognised and respected

Advertising

Media packs are available on request
Commercial Director Clare Dove

International

Head of Print Licensing Rachel Shaw

licensing@futurenet.com
www.futurecontenthub.com

Circulation

Head of Newstrade Tim Mathers

Production

Head of Production Mark Constance

Production Project Manager Matthew Eglinton

Advertising Production Manager Joanne Crosby

Digital Editions Controller Jason Hudson

Production Managers Keely Miller, Nola Cokely,

Vivienne Calvert, Fran Twentyman

Printed by William Gibbons, 26 Planetary Road,
Willenhall, West Midlands, WV13 3XT

Distributed by Marketforce, 5 Churchill Place, Canary Wharf, London, E14 5HU
www.marketforce.co.uk Tel: 0203 787 9001

Python The Complete Manual Thirteenth Edition (CMB4316)
© 2022 Future Publishing Limited

We are committed to only using magazine paper which is derived from responsibly managed,

certified forestry and chlorine-free manufacture. The paper in this bookazine was sourced
and produced from sustainable managed forests, conforming to strict environmental and

socioeconomic standards. The paper holds full FSC or PEFC certification and accreditation.

All contents © 2022 Future Publishing Limited or published under licence. All rights reserved.

No part of this magazine may be used, stored, transmitted or reproduced in any way without

the prior written permission of the publisher. Future Publishing Limited (company number

2008885) is registered in England and Wales. Registered office: Quay House, The Ambury,
Bath BA1 1UA. All information contained in this publication is for information only and is, as far

as we are aware, correct at the time of going to press. Future cannot accept any responsibility

for errors or inaccuracies in such information. You are advised to contact manufacturers and

retailers directly with regard to the price of products/services referred to in this publication. Apps

and websites mentioned in this publication are not under our control. We are not responsible for

their contents or any other changes or updates to them. This magazine is fully independent and

not affiliated in any way with the companies mentioned herein.

Future plc is a public
company quoted on the
London Stock Exchange
(symbol: FUTR)
www.futureplc.com

Chief executive Zillah Byng-Thorne

Non-executive chairman Richard Huntingford

Chief financial officer Penny Ladkin-Brand

Tel +44 (0)1225 442 244

Contents
What you can find inside the bookazine

Code
& create

with
Python!

6

7

120 Find and check
your phone
Discover and log

Bluetooth devices

110 Handle multiple task
Learn to multi-task with

your Raspberry Pi

100 Using Python on Pi
Optimise your code

114 Create a Pi-powered
virtual reality setup
Use Python-VRZero

106 Use Python in Minecraft

Produce fantastic creations

72 Scrape Wikipedia
Start using Beautiful Soup

26 Make web apps
 Master this starter project

 32 Build an app for Android
Take your apps on the move

50 Replace your shell
Say goodbye to Bash

58 Scientific computing
Discover NumPy’s power

64 Python for system admins
How to tweak your settings

Introducing Python

Work with Python

86 Make a Pong clone
Enhance your game skills

88 Program a Space
Invaders clone
Have fun with Pivaders

94 Space Invaders clone 2
Continue making Pivaders

Use Python with Pi

8 Masterclass
Discover the basics of Python

Python
with

Get started

40 50 Python tips
 A selection of handy tips

Create with Python

80 Tic-tac-toe with Kivy
Program a simple game

Python
Always wanted to have a go at programming? No more
excuses, because Python is the perfect way to get started!

Python is a great programming language for both beginners and experts. It

is designed with code readability in mind, making it an excellent choice for

beginners who are still getting used to various programming concepts.

The language is popular and has plenty of libraries available, allowing

programmers to get a lot done with relatively little code.

You can make all kinds of applications in Python: you could use the

Pygame framework to write simple 2D games, you could use the GTK

libraries to create a windowed application, or you could try something

a little more ambitious like an app such as creating one using Python’s

Bluetooth and Input libraries to capture the input from a USB keyboard and

relay the input events to an Android phone.

For this tutorial we’re going to be using Python 2.x since that is the

version that is most likely to be installed on your Linux distribution.

In the following tutorials, you’ll learn how to create popular games using

Python programming. We’ll also show you how to add sound and AI to

these games.

Get started
with

8

Getting startedGet started with Python

9

10

Hello World

Let’s get stuck in, and what better way than with the programmer’s

best friend, the ‘Hello World’ application! Start by opening a terminal.

Its current working directory will be your home directory. It’s probably

a good idea to make a directory for the files that we’ll be creating in

this tutorial, rather than having them loose in your home directory.

You can create a directory called Python using the command mkdir

Python. You’ll then want to change into that directory using the

command cd Python.

The next step is to create an empty file using the command ‘touch’

followed by the filename. Our expert used the command touch

hello_world.py. The final and most important part of setting up the

file is making it executable. This allows us to run code inside the hello_

world.py file. We do this with the command chmod +x hello_world.

py. Now that we have our file set up, we can go ahead and open it up

in nano, or alternatively any text editor of your choice. Gedit is a great

editor with syntax highlighting support that should be available on any

distribution. You’ll be able to install it using your package manager if

you don’t have it already.

 [liam@liam-laptop ~]$ mkdir Python

 [liam@liam-laptop ~]$ cd Python/

 [liam@liam-laptop Python]$ touch hello_world.py

 [liam@liam-laptop Python]$ chmod +x hello_world.py

 [liam@liam-laptop Python]$ nano hello_world.py

Our Hello World program is very simple, it only needs two lines.

The first line begins with a ‘shebang’ (the symbol #! – also known

Getting started

11

as a hashbang) followed by the path to the Python interpreter. The

program loader uses this line to work out what the rest of the lines

need to be interpreted with. If you’re running this in an IDE like IDLE,

you don’t necessarily need to do this.

The code that is actually read by the Python interpreter is only a

single line. We’re passing the value Hello World to the print function by

placing it in brackets immediately after we’ve called the print function.

Hello World is enclosed in quotation marks to indicate that it is a literal

value and should not be interpreted as source code. As we would

expect, the print function in Python prints any value that gets passed

to it from the console.

You can save the changes you’ve just made to the file in nano using

the key combination Ctrl+O, followed by Enter. Use Ctrl+X to exit nano.

 #!/usr/bin/env python2

 print(“Hello World”)

You can run the Hello World program by prefixing

its filename with ./ – in this case you’d type:

 ./hello_world.py.

 [liam@liam-laptop Python]$./hello_world.py

 Hello World

Tip

If you were using a graphical
editor such as gedit, then you
would only have to do the
last step of making the file
executable. You should only have
to mark the file as executable
once. You can freely edit the file
once it is executable.

“A variable is associated with an area in
memory that you can use to store data”

Variables and data types
A variable is a name in source code that is associated with an area in

memory that you can use to store data, which is then called upon

throughout the code. The data can be one of many types, including:

Integer Stores whole numbers

Float Stores decimal numbers

Boolean Can have a value of True or False

String Stores a collection of characters. “Hello World” is a

string

Get started with Python

Getting started

12

Tip

At this point, it’s worth explaining
that any text in a Python file
that follows a # character will be
ignored by the interpreter. This
is so you can write comments in
your code.

As well as these main data types, there are sequence types (technically,

a string is a sequence type but is so commonly used we’ve classed it

as a main data type):

List Contains a collection of data in a specific order

Tuple Contains a collection immutable data in a specific

order

A tuple would be used for something like a co-ordinate, containing

an x and y value stored as a single variable, whereas a list is typically

used to store larger collections. The data stored in a tuple is immutable

because you aren’t able to change values of individual elements in a

tuple. However, you can do so in a list.

It will also be useful to know about Python’s dictionary type. A

dictionary is a mapped data type. It stores data in key-value pairs.

This means that you access values stored in the dictionary using that

value’s corresponding key, which is different to how you would do it

with a list. In a list, you would access an element of the list using that

element’s index (a number representing where the element is placed

in the list).

Let’s work on a program we can use to demonstrate how to use

variables and different data types. It’s worth noting at this point that

you don’t always have to specify data types in Python. Feel free to

create this file in any editor you like. Everything will work just fine as

long as you remember to make the file executable. We’re going to call

ours variables.py.

Interpreted vs compiled languages

An interpreted language

such as Python is one

where the source code

is converted to machine

code and then executed

each time the program

runs. This is different from a

compiled language such as

C, where the source code is

only converted to machine

code once – the resulting

machine code is then

executed each time the

program runs.

Get started with Python

Getting started

Full code listing

#!/usr/bin/env python2

We create a variable by writing the name of the

variable we want followed# by an equals sign,

which is followed by the value we want to store

in the# variable. For example, the following line

creates a variable called# hello_str, containing the

string Hello World.

hello_str = “Hello World”

hello_int = 21

hello_bool = True

hello_tuple = (21, 32)

hello_list = [“Hello,”, “this”, “is”,

“a”, “list”]

This list now contains 5 strings. Notice that

there are no spaces# between these strings so if

you were to join them up so make a sentence #

you’d have to add a space between each element.

hello_list = list()

hello_list.append(“Hello,”)

hello_list.append(“this”)

hello_list.append(“is”)

hello_list.append(“a”)

hello_list.append(“list”)

The first line creates an empty list and the

following lines use the append# function

of the list type to add elements to the

list. This way of using a# list isn’t

really very useful when working

with strings you know of in

advance, but it can be

useful when working with

dynamic data such as

user# input. This list

will overwrite the

first list without

any warning

The following line creates

an integer variable called

hello_int with the #

value of 21. Notice how

it doesn’t need to go in

quotation marks

You could

also create the

same list in the

following way

The same principal is

true of Boolean values

We create a tuple in

the following way

And a list in this way

13

Get started with Python

Getting started

print(str(hello_tuple[0]))

We can’t change the value of those elements

like we just did with the list

Notice the use of the str function above to

explicitly convert the integer

value inside the tuple to a string before

printing it.

print(hello_dict[“first_name”] + “ “ + hello_

dict[“last_name”] + “ has “ +

 hello_dict[“eye_colour”] + “ eyes.”)

print(“{0} {1} has {2} eyes.”.format(hello_

dict[“first_name”],

 hello_dict[“last_name”],

 hello_dict[“eye_colour”]))

Remember

that tuples are

immutable,

although we

can access the

elements of them

like so

Let’s create a

sentence using

the data in our

hello_dict

A much tidier way

of doing this would

be to use Python’s

string formatter

as we# are using the same variable name as the

previous list.

hello_dict = { “first_name” : “Liam”,

 “last_name” :

“Fraser”,

 “eye_colour” : “Blue” }

Let’s access some elements inside our

collections# We’ll start by changing the value

of the last string in our hello_list and# add an

exclamation mark to the end. The “list” string is

the 5th element # in the list. However, indexes

in Python are zero-based, which means the

first element has an index of 0.

print(hello_list[4])

hello_list[4] += “!”

The above line is the same as

hello_list[4] = hello_list[4] + “!”

print(hello_list[4])

Notice that there

will now be two

exclamation marks

present when we

print the element

14

Get started with Python

We might as well

create a dictionary

while we’re at it.

Notice how we’ve

aligned the colons

below to make the

code tidy

15

Control structures
In programming, a control structure is any kind of statement that can

change the path that the code execution takes. For example, a control

structure that decided to end the program if a number was less than 5

would look something like this:

#!/usr/bin/env python2

import sys # Used for the sys.exit function

int_condition = 5

if int_condition < 6:

 sys.exit(“int_condition must be >= 6”)

else:

 print(“int_condition was >= 6 - continuing”)

The path that the code takes will depend on the value of

the integer int_condition. The code in the ‘if’ block will only be

executed if the condition is true. The import statement is used to

load the Python system library; the latter provides the exit function,

allowing you to exit the program, printing an error message. Notice

that indentation (in this case four spaces per indent) is used to indicate

which statement a block of code belongs to. ‘If’ statements are

probably the most commonly used control structures. Other control

“The path the code takes will depend on
the value of the integer int_condition”

Indentation in detail

As previously mentioned,

the level of indentation

dictates which statement a

block of code belongs to.

Indentation is mandatory

in Python, whereas in other

languages, sets of braces

are used to organise code

blocks. For this reason, it is

essential to use a consistent

indentation style. Four

spaces are typically used to

represent a single level of

indentation in Python. You

can use tabs, but tabs are

not well defined, especially if

you open a file in more than

one editor.

Get started with Python Getting started

Getting started

16

[liam@liam-laptop Python]$./

construct.py

How many integers? acd

You must enter an integer

[liam@liam-laptop Python]$./

construct.py

How many integers? 3

Please enter integer 1: t

You must enter an integer

Please enter integer 1: 5

Please enter integer 2: 2

Please enter integer 3: 6

Using a for loop

5

2

6

Using a while loop

5

2

6

structures include: the following items, which you should be aware

of when using Python:

• For statements, which allow you to iterate over items in

collections, or to repeat a piece of code again a certain number

of times;

• While statements, a loop that continues while the condition

is true.

We’re going to write a program that accepts user input from the

user to demonstrate how control structures work. We’re calling it

construct.py. The ‘for’ loop is using a local copy of the current value,

which means any changes inside the loop won’t make any changes

affecting the list. On the other hand however, the ‘while’ loop is

directly accessing elements in the list, so you could change the list

there should you want to do so. We will talk about variable scope in

some more detail later on in the article. The output from the above

program is as follows:

“The ‘for‘ loop uses a local copy, so
changes in the loop won’t affect the list”

Get started with Python

Getting started

17

The number of

integers we want

in the list

A list to store the

integers

#!/usr/bin/env python2

We’re going to write a program that will ask the

user to input an arbitrary

number of integers, store them in a collection,

and then demonstrate how the

collection would be used with various control

structures.

import sys # Used for the sys.exit

function

target_int = raw_input(“How many

integers? “)

By now, the variable target_int contains a string

representation of

whatever the user typed. We need to try and

convert that to an integer but

be ready to # deal with the error if it’s not.

Otherwise the program will

crash.

try:

 target_int = int(target_int)

except ValueError:

 sys.exit(“You must enter an

integer”)

ints = list()

count = 0

Full code listing

These are used

to keep track

of how many

integers we

currently have

Get started with Python

Getting started

Or with a while loop:

print(“Using a while loop”)

We already have the total above, but knowing

By now, the

user has given

up or we have

a list filled with

integers. We can

loop through

these in a couple

of ways. The first

is with a for loop

Keep asking for an integer until we have the

required number

while count < target_int:

 new_int = raw_input(“Please enter

integer {0}: “.format(count + 1))

 isint = False

 try:

 new_int = int(new_int)

 except:

 print(“You must enter an

integer”)

 # Only carry on if we have an integer. If not,

we’ll loop again

 # Notice below I use ==, which is different from

=. The single equals is an

assignment operator whereas the double

equals is a comparison operator.

 if isint == True:

 # Add the integer to the collection

 ints.append(new_int)

 # Increment the count by 1

 count += 1

print(“Using a for loop”)

for value in ints:

 print(str(value))

If the above

succeeds then

isint will be set

to true: isint

=True

18

Get started with Python

Getting started

19

Functions and variable scope
Functions are used in programming to break processes down

into smaller chunks. This often makes code much easier to read.

Functions can also be reusable if designed in a certain way. Functions

can have variables passed to them. Variables in Python are always

passed by value, which means that a copy of the variable is passed

to the function that is only valid in the scope of the function. Any

changes made to the original variable inside the function will be

discarded. However, functions can also return values, so this isn’t an

issue. Functions are defined with the keyword def, followed by the

name of the function. Any variables that can be passed through are

put in brackets following the function’s name. Multiple variables are

separated by commas. The names given to the variables in these

brackets are the ones that they will have in the scope of the function,

regardless of what the variable that’s passed to the function is called.

Let’s see this in action. The output from the program opposite is

as follows:

“Functions are defined with the keyword
def, then the name of the function”

More about a Python list

A Python list is similar to an

array in other languages. A

list (or tuple) in Python can

contain data of multiple

types, which is not usually

the case with arrays in other

languages. For this reason,

we recommend that you

only store data of the same

type in a list. This should

almost always be the case

anyway due to the nature of

the way data in a list would

be processed.

the len function is very

useful.

total = len(ints)

count = 0

while count < total:

 print(str(ints[count]))

 count += 1

Get started with Python

Getting started

20

Scope is an important thing to get the hang of, otherwise it can

get you into some bad habits. Let’s write a quick program to

demonstrate this. It’s going to have a Boolean variable called cont,

which will decide if a number will be assigned to a variable in an if

statement. However, the variable hasn’t been defined anywhere

apart from in the scope of the if statement. We’ll finish off by trying

to print the variable.

#!/usr/bin/env python2 # Below is a function

called modify_string, which accepts a variable

that will be called original in the scope of the

function. Anything # indented with 4 spaces

under the function definition is in the

scope.

def modify_string(original):

 original += “ that has been

modified.”

 # At the moment, only the local copy of this

string has been modified

def modify_string_return(original):

 original += “ that has been

modified.”

 # However, we can return our local copy to the

caller. The function# ends as soon as the return

statement is used, regardless of where it # is in

the function.

 return original

test_string = “This is a test string”

modify_string(test_string)

print(test_string)

test_string = modify_string_

return(test_string)

print(test_string)

The function’s return value is stored in the

variable test string, # overwriting the original and

therefore changing the value that is # printed.

We are now outside

of the scope of

the modify_string

function, as we have

reduced the level of

indentation

The test string

won’t be changed

in this code

However, we

can call the

function like this

[liam@liam-laptop Python]$./functions_and_

scope.py

This is a test string

This is a test string that has been modified.

Get started with Python

Getting started

21

#!/usr/bin/env python2

cont = False

var = 0

if cont:

 var = 1234

if var != 0:

 print(var)

#!/usr/bin/env python2

cont = False

if cont:

 var = 1234

print(var)

In the section of code above, Python will convert the integer to a string

before printing it. However, it’s always a good idea to explicitly convert

things to strings – especially when it comes to concatenating strings

together. If you try to use the + operator on a string and an integer,

there will be an error because it’s not explicitly clear what needs to

happen. The + operator would usually add two integers together.

Having said that, Python’s string formatter that we demonstrated

earlier is a cleaner way of doing that. Can you see the problem? Var has

only been defined in the scope of the if statement. This means that we

get a very nasty error when we try to access var.

[liam@liam-laptop Python]$./scope.py

Traceback (most recent call last):

 File “./scope.py”, line 8, in <module>

 print var

NameError: name ‘var’ is not defined

If cont is set to True, then the variable will be created and we can

access it just fine. However, this is a bad way to do things. The correct

way is to initialise the variable outside of the scope of the if statement.

Get started with Python

Getting started

The variable var is defined in a wider scope than the if statement,

and can still be accessed by the if statement. Any changes made to

var inside the if statement are changing the variable defined in the

larger scope. This example doesn’t really do anything useful apart

from illustrate the potential problem, but the worst-case scenario has

gone from the program crashing to printing a zero. Even that doesn’t

happen because we’ve added an extra construct to test the value of

var before printing it.

Comparison operators
The common comparison operators available in Python include:

< strictly less than

<= less than or equal

> strictly greater than

>= greater than or equal

== equal

!= not equal

“Google, or any other search engine,
is very helpful if you are stuck with
anything, or have an error message you
can’t work out how to fix”

Tip

You can define defaults for
variables if you want to be able to
call the function without passing
any variables through at all. You
do this by putting an equals
sign after the variable name. For
example, you can do:
def modify_string (original=”
Default String”)

22

Get started with Python

Getting started

Coding style
It’s worth taking a little time to talk about coding style. It’s simple to

write tidy code. The key is consistency. For example, you should always

name your variables in the same manner. It doesn’t matter if you want

to use camelCase or use underscores as we have. One crucial thing is

to use self-documenting identifiers for variables. You shouldn’t have

to guess what a variable does. The other thing that goes with this is to

always comment your code. This will help anyone else who reads your

code, and yourself in the future. It’s also useful to put a brief summary

at the top of a code file describing what the application does, or a part

of the application if it’s made up of multiple files.

Summary
This article should have introduced you to the basics of programming

in Python. Hopefully you are getting used to the syntax, indentation

and general look and feel of a Python program. The next step is

to learn how to come up with a problem that you want to solve,

and break it down into small steps that you can implement in a

programming language. Google, or any other search engine, is very

helpful. If you are stuck with anything, or have an error message you

can’t work out how to fix, stick it into Google and you should be a lot

closer to solving your problem. For example, if we Google ‘play mp3

file with python’, the first link takes us to a Stack Overflow thread with a

bunch of useful replies. Don’t be afraid to get stuck in – the real fun of

programming is solving problems one manageable chunk at a time.

23

Get started with Python

Introducing Python Python essentials

24

Now that you’ve taken the first steps with Python, it’s time

to begin using that knowledge to get coding. In this section,

you’ll find out how to begin coding apps for Android operating

systems (p.32) and the worldwide web (p.26). These easy-to-

follow tutorials will help you to cement the Python language

that you’ve learned, while developing a skill that is very helpful

in the current technology market. We’ll finish up by giving you

50 essential Python tips (p.40) to increase your knowledge and

ability in no time.

Introducing
Python
Lay the foundations and build your knowledge

Introducing PythonPython essentials

25

Introducing Python Make web apps with Python

Python 2.7:
https://www.python.org/download/
releases/2.7/

Django version 1.4:
 https://www.djangoproject.com/

What you’ll need…

Python provides quick and easy way to build
applications, including web apps. Find out how to
use it to build a feature-complete web app

Python is known for its simplicity and capabilities. At this point it is

so advanced that there is nothing you cannot do with Python, and

conquering the web is one of the possibilities. When you are using

Python for web development you get access to a huge catalogue

of modules and community support – make the most of them.

Web development in Python can be done in many different

ways, right from using the plain old CGI modules to utilising fully

groomed web frameworks. Using the latter is the most popular

method of building web applications with Python, since it allows

you to build applications without worrying about all that low-level

implementation stuff. There are many web frameworks available for

Python, such as Django, TurboGears and Web2Py. For this tutorial

we will be using our current preferred option, Django.

26

Make web
apps with
Python

01The django-admin.py file is used

to create new Django projects.

Let’s create one for our issue tracker

project here…

In Django, a project represents the

site and its settings. An application, on

the other hand, represents a specific

feature of the site, like blogging or

tagging. The benefit of this approach is

that your Django application becomes

The Django Project
magazine issue tracker

portable and can be integrated with

other Django sites with very little effort.

 $ django-admin.py startproject

ludIssueTracker

A project directory will be created.

This will also act as the root of your

development web server that comes

with Django. Under the project

directory you will find the following

items…

manage.py: Python script to work with

your project.

ludIssueTracker: A python package

(a directory with __init__.py file) for

Introducing PythonMake web apps with Python

02Before we start working

on the application, let’s

configure the Django project

as per our requirements.

Edit ludIssueTracker/settings.py

as follows (only parts requiring

modification are shown):

Database Settings: We will be

using SQLite3 as our database

system here.

NOTE: Red text indicates new

code or

updated code.

‘default’: {

 ‘ENGINE’:

‘django.db.backends.

sqlite3’,

 ‘NAME’: ‘ludsite.

db3,

Path settings
Django requires an absolute

path for directory settings.

But we want to be able to

pass in the relative directory

references. In order to do that

we will add a helper Python

function. Insert the following

code at the top of the settings.

py file:

 import os

 def getabspath(*x):

 return os.path.join(os.

path.abspath(os.path.

Configuring the
Django project

27

03 In this step we will create the

primary app for our site, called

ludissues. To do that, we will use the

manage.py script:

 $ python manage.py startapp

Creating ludissues app

04 This is the part where we

define the data model

for our app. Please see the inline

comments to understand what is

happening here.

From django.db import models:

 # We are importing the

user authentication module so

that we use the built

 # in authentication model

in this app

 from django.contrib.auth.

models import User

 # We would also create an

admin interface for our app

from django.contrib import

admin

 # A Tuple to hold the

multi choice char fields.

 # First represents the

field name the second one

repersents the display name

ISSUE_STATUS_CHOICES = (

 (‘new’, ‘New’),

 (‘accepted’,’Accepted’),

 (‘reviewed’,’Reviewed’),

 (‘started’,’Started’),

 (‘closed’,’Closed’),

)

Creating the data model

“When you are using Python for web
development you get access to a huge
catalogue of modules and support”

your project. This package is the one

containing your project’s settings and

configuration data.

ludIssueTracker/settings.py: This file

contains all the configuration options

for the project.

ludIssueTracker/urls.py: This file

contains various URL mappings.

wsgi.py: An entry-point for WSGI-

compatible web servers to serve your

project. Only useful when you are

deploying your project. For this tutorial

we won’t be needing it.

dirname(__file__)), *x)

Now update the path options:

 @code

 TEMPLATE_DIRS = (

 getabspath(‘templates’)

)

 MEDIA_ROOT =

getabspath(‘media’)

 MEDIA_URL = ‘/media/’

Now we will need to enable the

admin interface for our Django

site. This is a neat feature of Django

which allows automatic creation of

an admin interface of the site based

on the data model. The admin

interface can be used to add and

manage content for a Django site.

Uncomment the following line:

 INSTALLED_APPS = (

 ‘django.contrib.auth’,

 ‘django.contrib.

contenttypes’,

 ‘django.contrib.sessions’,

 ‘django.contrib.sites’,

 ‘django.contrib.messages’,

 ‘django.contrib.

staticfiles’,

 ‘django.contrib.admin’,

 # ‘django.contrib.

admindocs’,

)

ludissues

We will need to enable this app in the

config file as well:

 INSTALLED_APPS = (

 ‘django.contrib.admin’,

 ‘ludissues’,

)

Introducing Python

28

05The admin site is already

enabled, but we need to enable

it in the urls.py file – this contains

the regex-based URL mapping from

model to view. Update the urls.py file

as follows:

 from django.conf.urls import

patterns, include, url

 from django.contrib import

admin

admin.autodiscover()

 urlpatterns = patterns(‘’,

 url(r’̂ admin/’,

include(admin.site.urls)),

)

Enabling the admin site

Make web apps with Python

06Django includes a built-in

web server which is very

handy to debug and test Django

applications. Let’s start it to see how

our admin interface works…

To start the web server:

 $ python manage.py

runserver

If you do not have any errors in your

code, the server should be available

on port 8000. To launch the admin

interface, navigate your browser to

http://localhost:8000/admin.

You will be asked to log in here.

Enter the username and password

Starting the Django
web server

After logging in, you will notice that

all the apps installed in your project are

available here. We are only interested in

the Auth and LudIssues app.

You can click the +Add to add a

record. Click the Add button next to

Users and add a few users to the site.

Once you have the users inside the

system, you can now add a few issues

to the system.

Click the Add button next to Issues.

Here you will notice that you can enter

Owner, Status and Summary for the

issue. But what about the opened_on

and modified_on field that we

 class Issue(models.Model):

 # owner will be a

foreign key to the User

model which is already built-

in Django

 owner = models.ForeignKe

y(User,null=True,blank=True)

 # multichoice with

defaulting to “new”

 status = models.

CharField(max_

length=25,choices=ISSUE_

STATUS_CHOICES,default=’new’)

 summary = models.

TextField()

 # date time field which

will be set to the date time

when the record is created

 opened_on = models.

DateTimeField(‘date opened’,

auto_now_add=True)

 modified_on = models.

DateTimeField(‘date modified’,

auto_now=True)

 def name(self):

 return self.summary.

split(‘\n’,1)[0]

 # Admin front end for the

app. We are also configuring

some of the

 # built in attributes for

the admin interface on

 # how to display the list,

how it will be sorted

 # what are the search

fields etc.

class IssueAdmin(admin.

ModelAdmin):

 date_hierarchy =

‘opened_on’

 list_filter =

(‘status’,’owner’)

 list_display = (‘id’,’n

ame’,’status’,’owner’,’modifi

ed_on’)

 search_fields =

[‘description’,’status’]

 # register our site with

the Django admin interface

admin.site.

“It’s great that
the owner field
is automatically
populated with
details of the users
inside the site”

register(Issue,IssueAdmin)

To have the created data model

reflected in the database, run the

following command:

$ python manage.py syncdb

You’ll be also asked to create a

superuser for it:

You just installed Django’s auth

system, which means you don’t

have any superusers defined.

Would you like to create one

now? (yes/no): yes

that you created while you were

syncing the database.

Introducing Python

29

Make web apps with Python

07At this point, the admin

interface is working. But

we need a way to display the

data that we have added using

the admin interface. But there is

no public interface. Let’s create

it now.

We will have to begin by

editing the main

urls.py (ludIssueTracker/urls.py).

 urlpatterns = patterns(‘’,

(r’̂ ’,include(‘ludissues.

urls’)),

 (r’̂ admin/’,

Creating the public user
interface for ludissues

08Create a urls.py file in the

app directory (ludissues/urls.

py) with the following content:

 from django.conf.urls

import patterns, include, url

 # use ludissues model

 from models import

ludissues

 # dictionary with all the

Creating ludissues.url

defined while modelling the app?

They are not here because they are

not supposed to be entered by the

user. opened_on will automatically

set to the date time it is created and

modified_on will automatically set

to the date time on which an issue

is modified.

Another cool thing is that

the owner field is automatically

populated with all the users inside

the site.

We have defined our list view to

show ID, name, status, owner and

‘modified on’ in the model. You

can get to this view by navigating

to http://localhost:8000/admin/

ludissues/issue/.

include(admin.site.urls)),

)

This ensures that all the requests will be

processed by ludissues.urls first.

Introducing Python

30

Make web apps with Python

10Templates will be loaded

from the ludIssueTracker/

ludIssueTracker/templates directory.

Creating the template files

“To display an issue list and details here,
we are using a Django feature called
generic views”

Which translates to ludIssueTracker/

ludIssueTracker/templates/. Since

we will be accessing the templates

from the ludissues app, the

complete directory path would be

ludIssueTracker/ludIssueTracker/

templates/ludissues. Create these

folders in your project folder.

Also, create the directory

ludIssueTracker/ludIssueTracker/media/

for holding the CSS file. Copy the style.

css file from the resources directory

of the code folder. To serve files from

this folder, make it available publicly.

Open settings.py and add these lines in

ludIssueTracker/ludIssueTracker/urls.py:

 from django.conf.urls import

patterns, include, url

 from django.conf import

settings

 # Uncomment the next two

lines to enable the admin:

 from django.contrib import

admin

admin.autodiscover()

 urlpatterns = patterns(‘’,

 (r’̂ ’,include(‘ludissues.

urls’)),

 (r’̂ admin/’, include(admin.

site.urls)),

 (r’̂ media/

(?P<path>.*)$’,’django.views.

static.serve’,

 {‘document_root’:settings.

MEDIA_ROOT})

)

In Django, we start with the

ludIssueTracker/ludIssueTracker/

templates/base.html template. Think of

it as the master template which can be

inherited by slave ones.

ludIssueTracker/ludIssueTracker/

templates/base.html

 <!DOCTYPE html PUBLIC “-//

W3C//DTD XHTML Strict//EN”

 “ HYPERLINK “http://www.

w3.org/TR/xhtml1/DTD/xhtml1-

strict.dtd” http://www.w3.org/TR/

xhtml1/DTD/xhtml1-strict.dtd”>

 <html>

 <head>

 <title>{% block title

%}{% endblock %}LUD Issues</

title>

 <link rel=”stylesheet”

href=”{{ MEDIA_URL }}style.css”

type=”text/css” media=”screen”

/>

 </head>

 <body>

 <div id=”hd”>

 <h1>LUD

Issue Tracker</h1>

 </div>

 <div id=”mn”>

<a href=”{% url issue-list

%}” class=”sel”>View Issues</

a>

Admin

Site

 </div>

 <div id=”bd”>

 {% block

content %}{% endblock %}

 </div>

 </body>

 </html>09In this step we will create the

template and media directories.

We have already mentioned the

template directory as

TEMPLATE_DIRS = (

 getabspath(‘templates’)

)

Setting up template and
media directories

objects in ludissues

info = {

 ‘queryset’:ludissues.

objects.all(),

}

 # To save us writing lots of

python code

 # we are using the list_

detail generic view

 #list detail is the name of

view we are using

 urlpatterns =

patterns(‘django.views.generic.

list_detail’,

 #issue-list and issue-detail

are the template names

 #which will be looked in the

default template

#directories

 url(r’̂ $’,’object_

list’,info,name=’issue-list’),

 url(r’̂ (?P<object_

id>\d+)/$’,’object_

detail’,info,name=’issue-detail’),

)

To display an issue list and details,

we are using a Django feature called

generic views. In this case we are

using views called list and details. This

allow us to create an issue list view

and issue detail view. These views are

then applied using the issue_list.html

and issue_detail.html template. In

the following steps we will create the

template files.

Introducing Python

31

Make web apps with Python

{{ variablename }} represents a

Django variable.

(% block title %} represents blocks.

Contents of a block are evaluated

by Django and are displayed. These

blocks can be replaced by the child

templates.

Now we need to create the issue_list.

html template. This template is

responsible for displaying all the

issues available in the system.

ludIssueTracker/ludIssueTracker/

templates/ludissues/issue_list.html

 {% extends ‘base.html’ %}

 {% block title %}View Issues

- {% endblock %}

 {% block content %}

 <table cellspacing=”0”

class=”column-options”>

 <tr>

 <th>Issue</th>

 <th>Description</th>

 <th>Status</th>

 <th>Owner</th>

 </tr>

 {% for issue in

object_list %}

 <tr>

 <td><a href=”{% url

issue-detail issue.id %}”>{{

issue.id }}</td>

 <td><a href=”{% url

issue-detail issue.id %}”>{{

issue.name }}</td>

 <td>{{ issue.status

}}</td>

 <td>{{ issue.

owner}}</td>

 </tr>

 {% endfor %}

 </table>

 {% endblock %}

Here we are inheriting the base.

html file that we created earlier. {%

for issue in object_list %} runs on the

object sent by the urls.py. Then we

are iterating on the object_list for

issue.id and issue.name.

Now we will create issue_detail.

html. This template is responsible for

displaying the detail view of a case.

ludIssueTracker/ludIssueTracker/

templates/ludissues/issue_detail.

html

 {% extends ‘base.html’ %}

 {% block title %}Issue #{{

object.id }} - {% endblock %}

 {% block content %}

 <h2>Issue #{{ object.id }}

{{ object.status }}</

span></h2>

 <div class=”issue”>

 <h2>Information</

h2>

 <div class=”date”>

 <p class=”cr”>Opened

{{ object.opened_on }} ago</p>

 <p class=”up”>Last

modified {{ object.modified_on

}} ago</p>

 </div>

 <div

class=”clear”> </div>

 <div class=”block

w49 right”>

 <p class=”ass

title”>Owner</p>

 <p class=”ass”>{{

object.owner }}</p>

 </div>

 <div

class=”clear”> </div>

 <div class=”block”>

 <p class=”des

title”>Summary</p>

 <p class=”des”>{{

object.summary }}</p>

 </div>

</div>

 {% endblock %}

And that’s everything! The issue

tracker app is now complete and

ready to use. You can now point your

browser at localhost:8000 to start

using the app.

Introducing Python Build an app for Android with Python

Master Kivy, the excellent cross-platform application

framework to make your first Android app…

The great thing about Kivy is

there are loads of directions

we could take it in to do some

pretty fancy things. But, we’re

going to make a beeline for one

of Kivy’s coolest features - the

ability it affords you to easily run

your programs on Android.

We’ll approach this by first

showing how to make a new

app, this time a dynamic

Breakout-style game. We’ll then

be able to compile this straight

to an Android APK that you can

use just like any other.

Of course, once you have

mastered the basic techniques

you aren’t limited to using any

particular kind of app, as even on

Android you can make use of all

your favourite Python libraries

32

Build an app for
Android with Python

to make any sort of program

you like.

Once you’ve mastered Kivy,

your imagination is the only

limit. If you’re pretty new to Kivy,

don’t worry, we won’t assume

that you have any pre-existing

knowledge. As long as you have

mastered some of the Python

in this book so far, and have a

fairly good understanding of the

language, you shouldn’t have

any problems following along

with this.
Before anything else, let's

throw together a basic Kivy app

(Fig. 01). We've pre-imported

the widget types we'll be using,

which this time are just three:

the basic Widget with no special

behaviour, the ModalView with

a pop-up behaviour as used

last time, and the FloatLayout

as we will explain later. Kivy has

many other pre-built widgets for

creating GUIs, but this time we’re

going to focus on drawing the

whole GUI from scratch using

Kivy's graphics instructions. These

comprise either vertex instructions

to create shapes (including

rectangles, lines, meshes, and

so on) or contextual graphics

changes (such as translation,

rotation, scaling, etc), and are able

to be drawn anywhere on your

screen and on any widget type.

Before we can do any of this

we'll need a class for each kind of

game object, which we’re going

to pre-populate with some of

the properties that we'll need

later to control them. Remember

from last time, Kivy properties are

special attributes declared at class

level, which (among other things)

can be modified via kv language

and dispatch events when they

are modified. The Game class will

be one big widget containing the

entire game. We've specifically

Introducing PythonBuild an app for Android with Python

33

made it a subclass of FloatLayout

because this special layout is able

to position and size its children

in proportion to its own position

and size – so no matter where we

run it or how much we resize the

window, it will place all the game

objects appropriately.

Next we can use Kivy's graphics

instructions to draw various

shapes on our widgets. We'll just

demonstrate simple rectangles to

show their locations, though there

are many more advanced options

you might like to investigate. In

a Python file we can apply any

instruction by declaring it on the

canvas of any widget, an example

of which is shown in Fig. 03.

This would draw a red rectangle

with the same position and size

as the player at its moment of

instantiation – but this presents a

problem, unfortunately, because

the drawing is static. When we

later go on to move the player

widget, the red rectangle will

stay in the same place, while the

widget will be invisible when it is

in its real position.

We could fix this by keeping

references to our canvas

instructions and repeatedly

updating their properties to track

the player, but there's actually an

easier way to do all of this - we

can use the Kivy language we

introduced last time. It has a

special syntax for drawing on

the widget canvas, which we

can use here to draw each of our

widget shapes:

<Player>:

 canvas:

 Color:

 rgba: 1, 1, 1, 1

 Rectangle:

 pos: self.pos

 size: self.size

<Ball>:

 canvas:

 Color:

 rgb: 1, 0.55, 0

 Rectangle:

 pos: self.pos

 size: self.size

<Block>:

 canvas:

 Color:

 rgb: self.colour

 # A property we

predefined above

 Rectangle:

 pos: self.pos

 size: self.size

 Color:

 rgb: 0.1, 0.1, 0.1

 Line:

 rectangle:

 [self.x, self.y,

 self.width, self.

height]

The canvas declaration is special,

underneath it we can write any

canvas instructions we like. Don't

get confused, canvas is not a

widget and nor are graphics

instructions like Line. This is just

a special syntax that is unique to

the canvas. Instructions all have

different properties that can be

set, like the pos and size of the

rectangle, and you can check the

Kivy documentation online for

all the different possibilities. The

biggest advantage is that although

we still declare simple canvas

instructions, kv language is able

to detect what Kivy properties we

have referred to and automatically

track them, so when they are

updated (the widget moves or is

resized) the canvas instructions

move to follow this!

from kivy.app import App

from kivy.uix.widget import

Widget

from kivy.uix.floatlayout

import FloatLayout

from kivy.uix.modalview

import ModalView

__version__ = '0.1' #

Used later during Android

compilation

class BreakoutApp(App):

 pass

BreakoutApp().run()

from kivy.properties

import (ListProperty,

NumericProperty,

O b j e c t P r o p e r t y ,

StringProperty)

Fig 01

Fig 02

Introducing Python

34

from kivy.graphics.context_

instructions import Color

 from kivy.graphics.

vertex_instructions import

Rectangle

 class Player(Widget):

 class Game(FloatLayout):

Will contain everything

 blocks = ListProperty([])

 player = ObjectProperty()

The game's Player instance

 ball = ObjectProperty() #

The game's Ball instance

 class Player(Widget): # A

moving paddle

 position =

NumericProperty(0.5)

 direction =

StringProperty('none')

 class Ball(Widget): # A

bouncing ball

 # pos_hints are for

proportional positioning,

see below

 pos_hint_x =

NumericProperty(0.5)

 pos_hint_y =

NumericProperty(0.3)

 proper_size =

NumericProperty(0.)

 velocity =

ListProperty([0.1, 0.5])

 class Block(Widget): #

Each coloured block to

destroy

 colour =

ListProperty([1, 0, 0])

 def __init__(self,

**kwargs):

 super(Player,

self).__init__(**kwargs)

 with self.

canvas:

 Color(1, 0,

0, 1) # r, g, b, a -> red

Rectangle(pos=self.pos,

size=self.size)

 # or without

the with syntax, self.

canvas.add(...)

Above Running the app shows our coloured
blocks on the screen… but they all overlap! We
can fix that easily

You probably noticed we

had one of the Block’s ‘Color’

instructions refer to its colour

property. This means that we can

change the property any time to

update the colour of the block, or

in this case to give each block a

random colour (Fig. 04).

Now that each of our widgets

has a graphical representation,

let’s now tell our Game where

to place them, so that we can

start up the app and actually see

something there.
class Game(FloatLayout):

 def setup_blocks(self):

 for y_jump in range(5):

 for x_jump in

range(10):

 block = Block(pos_

hint={

 'x': 0.05 + 0.09*x_

jump,

 'y': 0.05 + 0.09*y_

jump})

 self.blocks.

append(block)

 self.add_

widget(block)

class BreakoutApp(App):

 def build(self):

 g = Game()

 g.setup_blocks()

 return g

Here we create the widgets we

want then use add_widget to add

them to the graphics tree. Our

root widget on the screen is an

instance of Game and every block

is added to that to be displayed.

The only new thing in there is

that every Block has been given

a pos_hint. All widgets have this

special property, and it is used by

FloatLayouts like our Game to set

their position proportionately to

the layout.

The dictionary is able to handle

various parameters, but in this

case ‘x’and ‘y’ give x and y Block

position as a relative fraction of

the parent width and height.

You can run the app now, and

this time it will add 50 blocks to

the Game before displaying it

on the screen. Each should have

one of the three possible random

colours and be positioned in a

grid, but you'll now notice their

sizes haven't been manually set so

they all overlap. We can fix this by

setting their size_hint properties –

and let's also

Build an app for Android with Python

Fig 03

Introducing Python

35

Build an app for Android with Python

take this opportunity to do the

same for the other widgets as

well (Fig. 05).

This takes care of keeping all our

game widgets positioned and

sized in proportion to the Game

containing them. Notice that the

Player and Ball use references to

the properties we set earlier, so

we'll be able to move them by

just setting these properties and

letting kv language automatically

update their positions.

The Ball also uses an extra

property to remain square rather

than rectangular, just because the

alternative would likely look a little

bit odd.

We've now almost finished

the basic graphics of our app! All

that remains is to add a Ball and a

Player widget to the Game.
<Game>:

 ball: the_ball

 player: the_player

 Ball:

 id: the_ball

 Player:

 id: the_player

You can run the game again

now, and should be able to see

all the graphics working properly.

Nothing moves yet, but thanks to

the FloatLayout everything should

remain in proportion if you resize

the game/window.

Now we just have to add the

game mechanics. For a game like

this you usually want to run some

update function many times per

second, updating the widget

positions and carrying out game

logic – in this case collisions with

the ball (Fig. 06).

The Clock can schedule

any function at any time,

either once or repeatedly. A

function scheduled at interval

automatically receives the time

since its last call (dt here), which

we've passed through to the ball

and player via the references we

created in kv language. It's good

practice to scale the update (eg

ball distance moved) by this dt,

so things remain stable even if

something interrupts the clock

and updates don't meet the

regular 1/60s you want.

At this point we have also

added the first steps toward

handling keyboard input, by

binding to the kivy Window to

call a method of the Player every

time a key is pressed. We can

then finish off the Player class by

adding this key handler along

with touch/mouse input.

class Player(Widget):

 def on_touch_down(self,

touch):

 self.direction = (

 'right' if touch.x >

self.parent. center_x else

'left')

 def on_touch_up(self,

touch):

 self.direction = 'none'

 def on_key_down(self,

keypress, scancode, *args):

 if scancode == 275:

 self.direction =

'right'

 elif scancode == 276:

 self.direction = 'left'

 else:

 self.direction = 'none'

 def on_key_up(self, *args):

 self.direction = 'none'

 def update(self, dt):

 dir_dict = {'right': 1,

'left': -1, 'none': 0}

 self.position += (0.5

* dt * dir_ dict[self.

direction])

These on_touch_ functions

are Kivy's general method for

interacting with touch or mouse

input, they are automatically

called when the input is detected

and you can do anything you

like in response to the touches

you receive. In this case we set

the Player's direction property

in response to either keyboard

and touch/mouse input, and

use this direction to move the

Player when its update method is

called. We can also add the right

behaviour for the ball (Fig. 07).

This makes the ball bounce off

every wall by forcing its velocity

to point back into the Game,

as well as bouncing from the

player paddle – but with an extra

kick just to let the ball speed

change. It doesn't yet handle any

interaction with the blocks or

any win/lose conditions, but it

does try to call Game.lose() if the

Introducing Python

36

ball hits the bottom of the player's

screen, so let's now add in some

game end code to handle all of this

(Fig. 08). And then add the code in

Fig. 09 to your 'breakout.kv 'file.

This should fully handle the

loss or win, opening a pop-up

with an appropriate message

and providing a button to try

again. Finally, we have to handle

destroying blocks when the ball

hits them (Fig. 10).

This fully covers these last

conditions, checking collision

via Kivy's built-in collide_widget

method that compares their

bounding boxes (pos and size). The

bounce direction will depend on

how far the ball has penetrated, as

this will tell us how it first collided

with the Block.

So there we have it, you can

run the code to play your simple

Breakout game. Obviously it's very

simple right now, but hopefully

you can see lots of different ways

to add whatever extra behaviour

you like – you could add different

types of blocks and power-ups, a

lives system, more sophisticated

paddle/ball interaction, or even

build a full game interface with a

menu and settings screen as well.

We’re just going to finish

showing one cool thing that you

can already do – compile your

game for Android! Generally

speaking you can take any Kivy

app and turn it straight into an

Android APK that will run on any

Build an app for Android with Python

of your Android devices. You can

even access the normal Android

API to access hardware or OS

features such as vibration, sensors

or native notifications.

We'll build for Android using

the Buildozer tool, and a Kivy

sister project wrapping other

build tools to create packages on

different systems. This takes care

of downloading and running

the Android build tools (SDK,

NDK, etc) and Kivy's Python-for-

Android tools that create the APK.

import random

 class Block(Widget):

 def __init__(self,

**kwargs):

 super(Block,

self).__init__(**kwargs)

 self.colour =

random.choice([

 (0.78, 0.28,

0),)0.28, 0.63, 0.28),)0.25,

0.28, 0.78)])

<Block>:

 size_hint: 0.09, 0.05

 # ... canvas part

<Player>:

 size_hint: 0.1, 0.025

 pos_hint: {'x': self.

position, 'y': 0.1}

 # ... canvas part

<Ball>:

 pos_hint: {'x': self.pos_

hint_x, 'y': self.pos_hint_y}

 size_hint: None, None

 proper_size:

 min(0.03*self.parent.

height, 0.03*self.parent.width)

 size: self.proper_size,

self.proper_size

 # ... canvas part

 from kivy.clock import

Clock

 from kivy.core.window

import Window

 from kivy.utils import

platform

 class Game(FloatLayout):

 def update(self, dt):

 self.ball.

update(dt) # Not defined yet

 self.player.

update(dt) # Not defined yet

 def start(self,

*args):

 Clock.schedule_

interval(self.update, 1./60.)

 def stop(self):

 Clock.

unschedule(self.update)

 def reset(self):

 for block in

self.blocks:

 self.remove_

widget(block)

 self.blocks = []

 self.setup_

blocks()

 self.ball.velocity

= [random.random(), 0.5]

 self.player.

position = 0.5

 class BreakoutApp(App):

 def build(self):

Fig 04

Fig 05

Fig 06

Introducing Python

37

Build an app for Android with Python

 g = Game()

 if platform() !=

'android':

 Window.

bind(on_key_down=g.player.

on_key_down)

 Window.

bind(on_key_up=g.player.on_

key_up)

 g.reset()

 Clock.schedule_

once(g.start, 0)

 return g

 class Ball(Widget)

 def update(self, dt):

 self.pos_hint_x

+= self.velocity[0] * dt

 self.pos_hint_y

+= self.velocity[1] * dt

 if self.right >

self.parent.right: # Bounce

from right

 self.

velocity[0] = -1 * abs(self.

velocity[0])

 if self.x < self.

parent.x: # Bounce from left

 self.

velocity[0] = abs(self.

velocity[0])

 if self.top

> self.parent.top: # Bounce

from top

 self.

velocity[1] = -1 * abs(self.

velocity[1])

 if self.y < self.

parent.y: # Lose at bottom

 self.parent.

lose() # Not implemented yet

 self.bounce_from_

player(self.parent.player)

 def bounce_

fro m _ player(s elf,

player):

 if self.

collide_widget(player):

 self.

velocity[1] = abs(self.

velocity[1])

 self.

velocity[0] += (

 0.1

* ((self.center_x -

player.center_x) /

player.width))

c l a s s

GameEndPopup(ModalView):

 message =

StringProperty()

 game =

ObjectProperty()

 class Game(Widget):

 def lose(self):

 self.stop()

 GameEndPopup(

message='[color=#ff0000]You

lose![/color]',

game=self).open()

 def win(self): #

Not called yet, but we'll

need it later

 self.stop()

 GameEndPopup(

message='[color=#00ff00]You

win![/color]',

game=self).open()

Here you will be needing

some basic dependencies, which

can be installed with ease just

by using your distro's normal

repositories. The main ones to use

are OpenJDK7, zlib, an up-to-date

Cython, and Git. If you are using

a 64-bit distro you will also be

in need of 32-bit compatibility

libraries for zlib, libstdc++, as well

as libgcc. You can then go on and

download and install Buildozer:

 <GameEndPopup>:

 size_hint: 0.8, 0.8

 auto_dismiss: False

Don't close if player

clicks outside

 BoxLayout:

 orientation:

'vertical'

 Label:

 text: root.

message

 font_size:

60

 markup: True

 halign:

'center'

 Button:

 size_hint_y:

None

 height:

sp(80)

 text: 'Play

again?'

 font_size:

60

 on_release:

root.game.start(); root.

dismiss()

Fig 07

Fig 08

Fig 09

Introducing Python

38

Build an app for Android with Python

Putting your APK
on the Play Store

1
Build and sign a
release APK

Begin by creating a personal
digital key, then using it to sign
a special release version of the
APK. Run these commands, and
follow the instructions.

Create your personal

digital key ##

You can choose your own

keystore name, alias,

and passwords.

$ keytool -genkey -v

-keystore test- release-

key.keystore \

 -alias test-alias

-keyalg RSA

-keysize 2048 -validity

10000

Compile your app in

release mode

$ buildozer android

release

Sign the APK with your

new key

$ jarsigner -verbose

-sigalg

SHA1withRSA -digestalg

SHA1 \

 -keystore ./test-

release-key.keystore \

 ./bin/KivyBreakout-0.1-

release-

unsigned.apk test-alias

Align the APK zip file

$ ~/.buildozer/android/

platform/android- sdk-21/

tools/zipalign -v 4 \

 ./bin/KivyBreakout-0.1-

release-

unsigned.apk \

 ./bin/KivyBreakout-0.1-

release.apk

Find out how to digitally sign a
release APK and upload it to an
app store of your choice

When you first run it, it will

download both the Android SDK

and NDK, which are large (at least

hundreds of megabytes) but vital

to the build. It will also take time

to build these and to compile the

Python components of your APK.

A lot of this only needs to be

done once, as future builds will

take a couple of minutes if you

change the buildozer.spec, or

just a few seconds if you've only

changed your code.

The APK produced is a debug

APK, and you can install and use

it. There are extra steps if you

want to digitally sign it so that it

can be posted on the Play store.

This isn't hard, and Buildozer can

do some of the work, but check

the documentation online for

full details.

Assuming everything goes

fine (it should!), your Android

APK will be in a newly created

'bin' directory with the name

‘KivyBreakout-0.1-debug.apk’.

You can send it to your phone

any way you like (eg email),

though you may need to

enable application installation

from unknown sources in your

Settings before you can install it.

git clone git://github.com/

kivy/buildozer

cd buildozer

sudo python2.7 setup.py

install

When you’re done with that part

you can then go on and navigate

to your Kivy app, and you’ll have

to name the main code file ‘main.

py’, this is the access point that the

Android APK will expect. Then:

buildozer init

This creates a ‘buildozer.spec’ file,

a settings file containing all the

information that Buildozer needs

to create your APK, from the name

and version to the specific Android

build options. We suggest that you

check through the whole file just

to see what's available but most of

the default settings will be fine, the

only thing we suggest changing

is (Fig. 11).

There are various other options

you will often want to set, but

none are really all that vital right

now, so you’re able to immediately

tell Buildozer to build your APK and

get going!
buildozer android debug

This will take some time, so be

patient and it will work out fine.

“Check through the whole file just to see
what’s available, but most of the default
settings will be fine”

39

Introducing PythonBuild an app for Android with Python

Above Your game should run on any modern
Android device… you can even build a release

version and publish to an app store!

2
Sign up as a
Google Play Developer

Visit https://play.google.com/
apps/publish/signup, and follow
the instructions. You'll need to
pay a one-off $25 charge, but
then you can upload as many
apps as you like.

3
Upload your app
to the store

Click 'Add new application'
to submit your app the store,
including uploading your APK
and adding description text.
When everything is ready, simply
click Publish, and it should take
just a few hours for your app to
go live!

 self.parent.do_

layout()

 self.parent.destroy_

blocks(self)

class Game(FloatLayout):

 def destroy_blocks(self,

ball):

 for i, block in

enumerate(self.blocks):

 if ball.

collide_widget(block):

 y_overlap

= (

 ball.

top - block.y if ball.

velocity[1] > 0

 else

block.top - ball.y) / block.

size_hint_y

 x_overlap

= (

 ball.

right - block.x if ball.

velocity[0] > 0

 else

block.right - ball.x) /

block.size_hint_x

 if x_

overlap < y_overlap:

ball.velocity[0] *=

-1

else:

ball.velocity[1] *=

-1

 self.

remove_widget(block)

 self.blocks.

pop(i)

title = Kivy Breakout #

Displayed in your app drawer

package.name = breakout #

Just a unique identifying

string,

 #

along with the package.

domain

fullscreen = 0 # This will

mean the navbar is not

covered

log_level = 2 # Not vital,

but this will print a lot

more debug

 # information

and may be useful if

something

 # goes wrong

Fig 10
 if len(self.

blocks) == 0:

 self.

win()

 return #

Only remove at most 1 block

per frame

Fig 11

40

Introducing Python 50 Python tips

Python is a programming language that lets you work more quickly and
integrate your systems more effectively. Today, Python is one of the most popular
programming languages in the open source space. Look around and you will
find it running everywhere, from various configuration tools to XML parsing. Here
is the collection of 50 gems to make your Python experience worthwhile…

50 Python tips

01On most of the UNIX systems,

you can run Python scripts from

the command line.

 $ python mypyprog.py

Running Python scripts

Basics

02The Python interactive

interpreter makes it easy to

try your first steps in programming

and using all Python commands.

You just issue each command at the

command prompt (>>>), one by

one, and the answer is immediate.

Python interpreter can be

started with the command:

 $ python

 kunal@ubuntu:~$ python

 Python 2.6.2 (release26-

maint, Apr 19 2009, 01:56:41)

[GCC 4.3.3] on linux2

Type “help”, “copyright”,

“credits” or “license” for

more information.

>>> <type commands here>

In this article, all the code

starting at the >>> symbol is to

be given at the Python prompt.

Running Python programs
from Python interpreter

It is also important to remember that

Python takes tabs very seriously – so

if you are receiving any error that

mentions tabs, correct the tab spacing.

03In Java, C++, and other statically

typed languages, you must

specify the data type of the function

return value and each function

argument. On the other hand, Python

is a dynamically typed language. In

Python you will never have to explicitly

specify the data type of anything you

use. Based on what value you assign,

Python will automatically keep track of

the data type internally.

Dynamic typing

04Python uses carriage returns

to separate statements, and

a colon and indentation to separate

code blocks. Most of the compiled

programming languages, such as C

and C++, use semicolons to separate

statements and curly brackets to

separate code blocks.

Python statements

05Python uses ‘==’ for

comparison and ‘=’ for

== and = operators

06You can use ‘+’ to concatenate

strings.

 >>> print ‘kun’+’al’

kunal

Concatenating strings

07The __init__ method is run as

soon as an object of a class is

instantiated. The method is useful to do

any initialization you want to do with

your object. The

__init__ method is analogous to a

constructor in C++, C# or Java.

Example:

 class Person:

 def __init__(self, name):

 self.name = name

 def sayHi(self):

 print ‘Hello, my name

is’, self.name

 p = Person(‘Kunal’)

 p.sayHi()

Output:

 [~/src/python $:] python

initmethod.py

 Hello, my name is Kunal

The __init__ method

assignment. Python does not

support inline assignment,

so there’s no chance of

accidentally assigning the value

when you actually want to

compare it.

41

Introducing Python50 Python tips

09Example:

The built-in function ‘dir()’ can
be used to find out which names a
module defines. It returns a sorted list
of strings.
 >>> import time

 >>> dir(time)

 [‘__doc__’, ‘__file__’,

‘__name__’, ‘__package__’,

‘accept2dyear’, ‘altzone’,

‘asctime’, ‘clock’, ‘ctime’,

‘daylight’, ‘gmtime’, ‘localtime’,

‘mktime’, ‘sleep’, ‘strftime’,

‘strptime’, ‘struct_time’,

‘time’, ‘timezone’, ‘tzname’,

‘tzset’]file’]

Module defined names

08To keep your programs
manageable as they grow in

size you may want to make them into
several files. Python allows you to put
multiple function definitions into a file
and use them as a module that can be
imported. These files must have a .py
extension however.

Example:

 # file my_function.py

 def minmax(a,b):

 if a <= b:

 min, max = a, b

 else:

 min, max = b, a

 return min, max

 Module Usage

 import my_function

Modules

10You can see the internal
documentation (if available) of

a module name by looking at
.__doc__.

Example:

 >>> import time

 >>> print time.clock.__doc__

 clock() -> floating

Module internal
documentation

11Python lets you access whatever
you have passed to a script

while calling it. The ‘command line’
content is stored in the sys.argv list.
 import sys

 print sys.argv

Passing arguments
to a Python script

12You can load predefined
modules or

commands at the startup of
any Python script by using
the environment variable
$PYTHONSTARTUP. You can
set environment variable
$PYTHONSTARTUP to a file which
contains the instructions load
necessary modules or commands .

Loading modules or
commands at startup

13You can use the function
‘DateTime’ to convert a string to a

date object.
Example:

 from DateTime import DateTime

 dateobj = DateTime(string)

Converting a string
to date object

15You can achieve auto
completion inside Python

interpreter by adding these lines to
your .pythonrc file (or your file for
Python to read on startup):
 import rlcompleter, readline

 readline.parse_and_bind(‘tab:

complete’)

This will make Python complete
partially typed function, method and
variable names when you press the
Tab key.

Tab completion
in Python interpreter

16You can pop up a graphical
interface for searching the

Python documentation using the
command:
 $ pydoc -g

You will need python-tk package for
this to work.

Python
documentation tool

point number

This example returns the CPU time or
real time since the start of the process
or since the first call to clock(). This has
just as much precision as the system
records do.

14You can convert a list to string
in the following ways.

1st method:

 >>> mylist = [‘spam’, ‘ham’,

Converting a string
to date object

‘eggs’]

 >>> print ‘, ‘.join(mylist)

 spam, ham, eggs

2nd method:

 >>> print ‘\n’.join(mylist)

 spam

 ham

 eggs

“Today, Python is
certainly one of
the most popular
programming
languages to be
found in the open
source space”

42

17You can start an HTTP server

on the given port on the

local machine. This will give you a

nice-looking access to all Python

documentation, including third-party

module documentation.

 $ pydoc -p <portNumber>

Accessing the Python
documentation server

18There are plenty of tools to help

with Python development.

Here are a few important ones:

IDLE: The Python built-in IDE, with

autocompletion, function signature

popup help, and file editing.

IPython: Another enhanced Python

shell with tab-completion and

other features.

Eric3: A GUI Python IDE with

autocompletion, class browser, built-in

shell and debugger.

WingIDE: Commercial Python IDE

with free licence available to open-

source developers everywhere.

Python development
software

Built-in modules

19You can use ‘atexit’ module to

execute functions at the time of

Python interpreter termination.

Example:

 def sum():

 print(4+5)

 def message():

 print(“Executing Now”)

 import atexit

 atexit.register(sum)

 atexit.register(message)

Output:

 Executing Now

9

Executing at Python
interpreter termination

20Python provides easy-to-use

functions – bin(), hex() and

oct() – to convert from integer to binary,

decimal and octal format respectively.

Example:

 >>> bin(24)

 ‘0b11000’

 >>> hex(24)

 ‘0x18’

 >>> oct(24)

 ‘030’

Converting from integer
to binary and more

21You can use the following

function to convert any charset

to UTF-8.

 data.decode(“input_charset_

here”).encode(‘utf-8’)

Converting any
charset to UTF-8

22 If you want to remove duplicates

from a list, just put every

element into a dict as a key (for

example with ‘none’ as value) and then

check dict.keys().

 from operator import setitem

 def distinct(l):

 d = {}

 map(setitem, (d,)*len(l),

l, [])

 return d.keys()

Removing
duplicates from lists

23Since Python has no do-while

or do-until loop constructs (yet),

you can use the following method to

achieve similar results:

 while True:

 do_something()

 if condition():

 break

Do-while loops

24To execute platform-specific

functions, it is very useful to be

able to detect the platform on which

the Python interpreter is running. You

can use ‘sys.platform’ to find out the

current platform.

Example:

On Ubuntu Linux

 >>> import sys

 >>> sys.platform

 ‘linux2’

On Mac OS X Snow Leopard

 >>> import sys

 >>> sys.platform

 ‘darwin’

Detecting system
platform

25Sometimes you may

want to enable or disable

the garbage collector function

at runtime. You can use the ‘gc’

module to enable or disable the

garbage collection.

Example:

 >>> import gc

 >>> gc.enable

 <built-in function enable>

 >>> gc.disable

 <built-in function

disable>

Disabling and enabling
garbage collection

26Many Python modules

ship with counterpart

C modules. Using these C

modules will give a significant

performance boost in your

complex applications.

Example:

 cPickle instead of

Pickle, cStringIO instead

of StringIO .

Using C-based modules
for better performance

Introducing Python 50 Python tips

43

27You can use the following built-

in functions.

max: Returns the largest element in

the list.

min: Returns the smallest element in

the list.

sum: This function returns the sum

of all elements in the list. It accepts an

optional second argument: the value

to start with when summing (defaults

to 0).

Calculating maximum,
minimum and sum

28Fraction instance can be

created in Python using the

following constructor:

 Fraction([numerator

[,denominator]])

Representing
fractional numbers

29 The ‘math’ module provides

a plethora of mathematical

functions. These functions work on

integer and float numbers, except

complex numbers. For complex

numbers, a separate module is used,

called ‘cmath’.

For example:

 math.acos(x): Return arc

cosine of x.

 math.cos(x): Returns cosine

of x.

 math.factorial(x) : Returns x

factorial.

Performing
math operations

30The ‘array’ module provides

an efficient way to use arrays

in your programs. The ‘array’ module

defines the following type:

 array(typecode [,

Working with arrays

31The ‘bisect’ module makes

it very easy to keep lists in

any possible order. You can use the

following functions to order lists.

 bisect.insort(list, item [,

low [, high]])

Inserts item into list in sorted order. If

item is already in the list, the new entry

is inserted to the right of any existing

entries there.

 bisect.insort_left(list, item

[, low [, high]])

Inserts item into list in sorted order.

If item is already within the list, the

new entry is inserted to the left of any

existing entries.

Sorting items

32The ‘re’ module makes it very

easy to use regxp-based

searches. You can use the function

‘re.search()’ with a regexp-based

expression. Check out the example

included below.

Example:

 >>> import re

 >>> s = “Kunal is a bad boy”

 >>> if re.search(“K”, s):

print “Match!” # char literal

...

 Match!

 >>> if re.search(“[@A-Z]”, s):

print “Match!” # char class

 ... # match either at-sign or

Using regular
expression-based search

33You can use the module ‘bz2’

to read and write data using

the bzip2 compression algorithm.

 bz2.compress() : For bz2

compression

 bz2.decompress() : For bz2

decompression

Example:

 # File: bz2-example.py

 import bz2

 MESSAGE = “Kunal is a bad

boy”

 compressed_message = bz2.

compress(MESSAGE)

 decompressed_message = bz2.

decompress(compressed_message)

 print “original:”,

repr(MESSAGE)

 print “compressed message:”,

repr(compressed_ message)

 print “decompressed message:”,

repr(decompressed_message)

Output:

 [~/src/python $:] python bz2-

example.py

 original: ‘Kunal is a bad

boy’

 compressed message:

‘BZh91AY&SY\xc4\x0fG\x98\ x00\

x00\x02\x15\x80@\x00\x00\x084%\

x8a \x00”\x00\x0c\x84\r\x03C\

xa2\xb0\xd6s\xa5\xb3\x19\x00\xf8\

xbb\x92)\xc2\x84\x86 z<\xc0’

 decompressed message: ‘Kunal

is a bad boy’

Working with bzip2 (.bz2)
compression format

initializer])

Once you have created an array

object, say myarray, you can apply a

bunch of methods to it. Here are a few

important ones:

 myarray.count(x): Returns the

number of occurrences of x

in a.

 myarray.extend(x): Appends x

at the end of the array.

 myarray.reverse(): Reverse the

order of the array.

capital letter

 Match!

 >>> if re.search(“\d”, s):

print “Match!” # digits class

...

“There are tools to
help develop
with Python”

Introducing Python50 Python tips

44

Introducing Python

34SQLite is fast becoming a very

popular embedded database

because of the zero configuration that

is needed, and its superior levels of

performance. You can use the module

‘sqlite3’ in order to work with these

SQLite databases.

Example:

 >>> import sqlite3

 >>> connection = sqlite.

connect(‘test.db’)

 >>> curs = connection.

cursor()

 >>> curs.execute(‘’’create

table item

 ... (id integer primary key,

itemno text unique,

 ... scancode text, descr text,

price real)’’’)

 <sqlite3.Cursor object at

0x1004a2b30>

Using SQLite database
with Python

35You can use the module ‘zipfile’

to work with zip files.

 zipfile.ZipFile(filename

[, mode [, compression

[,allowZip64]]])

Open a zip file, where the file can be

either a path to a file (a string) or a file-

like object.

 zipfile.close()¶

Close the archive file. You must call

‘close()’ before exiting your program or

essential records will not be written.

 zipfile.extract(member[,

path[, pwd]])

Extract a member from the archive

to the current working directory;

‘member’ must be its full name (or a

zipinfo object). Its file information is

extracted as accurately as possible.

‘path’ specifies a different directory to

extract to. ‘member’ can be a filename

or a zipinfo object. ‘pwd’ is the

password used for encrypted files.

Working with zip files

36You can use the module ‘glob’

to find all the pathnames

matching a pattern according to the

rules used by the UNIX shell. *, ?, and

character ranges expressed with [] will

be matched.

Example:

 >>> import glob

 >>> glob.glob(‘./[0-9].*’)

 [‘./1.gif’, ‘./2.txt’]

 >>> glob.glob(‘*.gif’)

 [‘1.gif’, ‘card.gif’]

 >>> glob.glob(‘?.gif’)

 [‘1.gif’]

Using wildcards to search
for filenames

37You can use the module ‘shutil’

to perform basic file operation

at a high level. This module works with

your regular files and so will not work

with special files like named pipes,

block devices, and so on.

 shutil.copy(src,dst)

Copies the file src to the file or

directory dst.

 shutil.copymode(src,dst)

Copies the file permissions from src

to dst.

 shutil.move(src,dst)

Moves a file or directory to dst.

 shutil.copytree(src, dst,

symlinks [,ignore]])

Recursively copy an entire directory

at src.

 shutil.rmtree(path [, ignore_

errors [, onerror]])

Deletes an entire directory.

Performing basic file
operations

38You can use module

commands to execute

UNIX commands. This is not

available in Python 3 – instead,

in this, you will need to use the

module ‘subprocess’.

Example:

 >>> import commands

 >>> commands.

getoutput(‘ls’)

 ‘bz2-example.py\ntest.py’

Executing UNIX
commands from Python

39You can use the module ‘os’

to gather up some operating-

system-specific information:

Example:

 >>> import os

 >>> os.path <module ‘posixpath’

 from ‘/usr/lib/python2.6/

posixpath.pyc’>>>> os.environ

{‘LANG’: ‘en_IN’, ‘TERM’: ‘xterm-

color’, ‘SHELL’:

 ‘/bin/bash’, ‘LESSCLOSE’:

 ‘/usr/bin/lesspipe %s %s’,

 ‘XDG_SESSION_COOKIE’:

 ‘925c4644597c791c704656354adf56d6-

 1257673132.347986-1177792325’,

 ‘SHLVL’: ‘1’, ‘SSH_TTY’: ‘/dev/

pts/2’, ‘PWD’: ‘/ home/kunal’,

 ‘LESSOPEN’: ‘| /usr/bin

 lesspipe

......}

 >>> os.name

 ‘posix’

 >>> os.linesep

 ‘\n’

Reading environment
variables

“Look around and you will find Python
everywhere, from various configuration
tools to XML parsing”

50 Python tips

45

Introducing Python

40You can use the module

‘smtplib’ to send email using

an SMTP (Simple Mail Transfer Protocol)

client interface.

smtplib.SMTP([host [, port]])

Example (send an email using

Google Mail SMTP server):

 import smtplib

 # Use your own to and from

email address

 fromaddr = ‘kunaldeo@gmail.com’

 toaddrs = ‘toemail@gmail.com’

 msg = ‘I am a Python geek.

Here is the proof.!’

 # Credentials

 # Use your own Google Mail

credentials while running the

program

 username = ‘kunaldeo@gmail.com’

 password = ‘xxxxxxxx’

 # The actual mail send

 server = smtplib.SMTP(‘smtp.

gmail.com:587’)

 # Google Mail uses secure

connection for SMTP connections

 server.starttls()

 server.login(username,password)

 server.sendmail(fromaddr,

toaddrs, msg)

 server.quit()

Sending email

41‘ftplib’ is a fully fledged client

FTP module for Python. To

establish an FTP connection, you can

use the following function:

smtplib.SMTP([host [, port]])

Example (send an email using

Google Mail SMTP server):

 ftplib.FTP([host [, user [,

passwd [, acct [, timeout]]]]])

Example:

 host = “ftp.redhat.com”

 username = “anonymous”

 password = “kunaldeo@gmail.

com”

 import ftplib

 import urllib2

 ftp_serv = ftplib.

Accessing FTP server

42‘The ‘webbrowser’ module

provides a convenient way to

launch webpages using the default

web browser.

Example (launch google.co.uk

with system’s default web

browser):

>>> import webbrowser

>>> webbrowser.open(‘http://

google.co.uk’)

True

Launching a webpage
with the web browser

FTP(host,username,password)

 # Download the file

 u = urllib2.urlopen (“ftp://

ftp.redhat.com/ pub/redhat/

linux/README”)

 # Print the file contents

 print (u.read())

Output:

 [~/src/python $:] python

ftpclient.py

Older versions of Red Hat Linux have

been moved to the following location:

ftp://archive.download.redhat.com/

pub/redhat/linux/

43The ‘hashlib’ module

supports a plethora of

secure hash algorithms including

SHA1, SHA224, SHA256, SHA384,

SHA512 and MD5.

Example (create hex digest of

the given text):

 >>> import hashlib

 # sha1 Digest

 >>> hashlib.sha1(“MI6

Classified Information 007”).

hexdigest()

 ‘e224b1543f229cc0cb935a1eb9593

 18ba1b20c85’

 # sha224 Digest

 >>> hashlib.sha224(“MI6

Classified

 Information 007”).hexdigest()

Creating secure hashes

‘3d01e2f741000b0224084482f905e9b7b97

 7a59b480990ea8355e2c0’

 # sha256 Digest

 >>> hashlib.sha256(“MI6 Classified

 Information 007”).hexdigest()

 ‘2fdde5733f5d47b67 2fcb39725991c89

 b2550707cbf4c6403e fdb33b1c19825e’

 # sha384 Digest

 >>> hashlib.sha384(“MI6 Classified

 Information 007”).hexdigest()

 ‘5c4914160f03dfbd19e14d3ec1e74bd8b99

 dc192edc138aaf7682800982488daaf540be

 9e0e50fc3d3a65c8b6353572d’

 # sha512 Digest

 >>> hashlib.sha512(“MI6 Classified

 Information 007”).hexdigest()

 ‘a704ac3dbef6e8234578482a31d5ad29d25

2c822d1f4973f49b850222edcc0a29bb89077

8aea807a0a48ee4ff8bb18566140667fbaf7

 3a1dc1ff192febc713d2’

 # MD5 Digest

 >>> hashlib.md5(“MI6 Classified

 Information 007”).hexdigest()

 ‘8e2f1c52ac146f1a999a670c826f7126’

44You can use the module

‘random’ to generate a wide

variety of random numbers. The

most used one is ‘random.seed([x])’. It

initialises the basic random number

generator. If x is omitted or None,

the current system time is used; the

current system time is also used to

initialise the generator when the

module is first imported.

Seeding random numbers

“Programming in
Python lets you
work more quickly
and integrate your
systems much
more effectively”

50 Python tips

46

45CSV files are very popular

for data exchange over

the web. Using the module ‘csv’,

you can read and write CSV files.

Example:

 import csv

 # write stocks data as

comma- separated values

 writer = csv.

writer(open(‘stocks.csv’, ‘wb’,

buffering=0))

 writer.writerows([

 (‘GOOG’, ‘Google, Inc.’,

505.24, 0.47, 0.09),

 (‘YHOO’, ‘Yahoo! Inc.’,

27.38, 0.33, 1.22),

 (‘CNET’, ‘CNET Networks,

Inc.’, 8.62, -0.13, -1.49)

])

 # read stocks data, print

status messages

 stocks = csv.

reader(open(‘stocks.csv’,

‘rb’))

 status_labels = {-1: ‘down’,

0: ‘unchanged’, 1: ‘up’}

 for ticker, name, price,

change, pct in stocks:

 status = status_

labels[cmp(float(change), 0.0)]

 print ‘%s is %s (%s%%)’

% (name, status, pct)

Working with
CSV files

46 ‘setuptools’ is a Python package

which lets you download, build,

install, upgrade and uninstall packages

very easily. To use the ‘setuptools’

Installing third-party
modules using setuptools

47 You can use the module

‘syslog’ to write to system log.

‘syslog’ acts as an interface to UNIX

syslog library routines.

Example:

 import syslog

 syslog.syslog(‘mygeekapp:

started logging’)

 for a in [‘a’, ‘b’, ‘c’]:

 b = ‘mygeekapp: I found

letter ‘+a

 syslog.syslog(b)

 syslog.syslog(‘mygeekapp:

the script goes to sleep now,

bye,bye!’)

Output:

 $ python mylog.py

 $ tail -f /var/log/messages

 Nov 8 17:14:34 ubuntu -- MARK

--

 Nov 8 17:22:34 ubuntu python:

mygeekapp: started logging

 Nov 8 17:22:34 ubuntu python:

mygeekapp: I found letter a

 Nov 8 17:22:34 ubuntu python:

mygeekapp: I found letter b

 Nov 8 17:22:34 ubuntu

python: mygeekapp: I found

letter c

 Nov 8 17:22:34 ubuntu

python: mygeekapp: the script

goes to sleep now, bye,bye!

Logging to system log

Third-party
modules

48‘ReportLab’ is a very

popular module for PDF

generation from Python.

Perform the following steps

to install ReportLab

 $ wget http://www.

reportlab.org/ftp/

Generating PDF
documents

“You can use the module ‘random’ to
generate a wide variety of random
numbers with the basic generator”

package you will need to install

these from your distribution’s

package manager.

After installation you can use

the command ‘easy_install’ to

perform any Python package

management tasks that are

necessary at that point.

Example (installing

simplejson using

setuptools):

 kunal@ubuntu:~$ sudo

easy_ install simplejson

 Searching for simplejson

 Reading http://pypi.

python.org/simple/

simplejson/

 Reading http://undefined.

org/python/#simplejson

 Best match: simplejson

2.0.9

 Downloading http://

pypi.python.org/packages/

source/s/simplejson/

simplejson-2.0.9.tar.gz#md5

=af5e67a39ca3408563411d357

e6d5e47

 Processing simplejson-

2.0.9.tar.gz

 Running simplejson-2.0.9/

setup.py -q bdist_egg

--dist-dir /tmp/

easy_install-FiyfNL/

simplejson-2.0.9/egg-dist-

tmp-3YwsGV

 Adding simplejson 2.0.9

to easy-install.pth file

 Installed /usr/local/lib/

python2.6/dist-packages/

simplejson-2.0.9-py2.6-

linux-i686.egg

 Processing dependencies

for simplejson

 Finished processing

dependencies for simplejson

Introducing Python 50 Python tips

47

49You can connect to Twitter

easily using the ‘Python-

Twitter’ module.

Perform the following steps to

install Python-Twitter:

 $ wget http://python-

twitter.googlecode.com/files/

python-twitter-0.6.tar.gz

 $ tar xvfz python-twitter*

 $ cd python-twitter*

 $ sudo python setup.py

install

Example (fetching followers list):

 >>> import twitter

Use you own twitter account

here

 >>> mytwi = twitter.Api(us

ername=’kunaldeo’,password=’x

xxxxx’)

 >>> friends = mytwi.

GetFriends()

 >>> print [u.name for u in

Using Twitter API

50You can use the Yahoo!

search SDK to access

Yahoo! search APIs from Python.

Perform the following steps

to install it:

 $wget http://developer.

yahoo.com/download/files/

yws- 2.12.zip

 $ unzip yws*

 $ cd yws*/Python/

pYsearch*/

 $ sudo python setup.py

install

Example:

 # Importing news search

API

 >>> from yahoo.search.

news import NewsSearch

 >>> srch =

NewsSearch(‘YahooDemo’,

query=’London’)

 # Fetch Results

 >>> info = srch.parse_

results()

 >>> info.total_results_

available

 41640

 >>> info.total_results_

returned

 10

 >>> for result in info.

results:

 ... print “’%s’, from

%s” % (result[‘Title’],

result[‘NewsSource’])

...

 ‘Afghan Handover to

Be Planned at London

Conference, Brown Says’,

from Bloomberg

.................

Doing Yahoo! news search

ReportLab_2_3.tar.gz

 $ tar xvfz ReportLab_2_3.

tar.gz

 $ cd ReportLab_2_3

 $ sudo python setup.py

install

For a successful installation, you

should see a similar message:

 ############SUMMARY

INFO###########

 ##########################

#########

 #Attempting install of _rl_

accel, sgmlop & pyHnj

 #extensions from ‘/home/

kunal/python/ ReportLab_2_3/

src/rl_addons/rl_accel’

 ##########################

#########

 #Attempting install of

_renderPM

 #extensions from ‘/home/

kunal/python/ ReportLab_2_3/

src/rl_addons/renderPM’

 # installing with freetype

version 21

 ##########################

#########

Example:

 >>> from reportlab.pdfgen.

canvas import Canvas

 # Select the canvas of

letter page size

 >>> from reportlab.lib.

pagesizes import letter

 >>> pdf = Canvas(“bond.pdf”,

pagesize = letter)

 # import units

 >>> from reportlab.lib.units

import cm, mm, inch, pica

 >>> pdf.setFont(“Courier”,

60)

 >>> pdf.setFillColorRGB(1,

0, 0)

 >>> pdf.
friends]

Introducing Python50 Python tips

“There are plenty of services such as
IPython and IDLE available to users to
help them with Python development”

drawCentredString(letter[0]

/ 2, inch * 6, “MI6

CLASSIFIED”)

 >>> pdf.setFont(“Courier”,

40)

 >>> pdf.

drawCentredString(letter[0] /

2, inch * 5, “For 007’s Eyes

Only”)

 # Close the drawing for

current page

 >>> pdf.showPage()

 # Save the pdf page

 >>> pdf.save()

Output:

 @image:pdf.png

 @title: PDF Output

 [u’Matt Legend Gemmell’,

u’jono wells’, u’The MDN

Big Blog’, u’Manish Mandal’,

u’iH8sn0w’, u’IndianVideoGamer.

com’, u’FakeAaron Hillegass’,

u’ChaosCode’, u’nileshp’, u’Frank

Jennings’,..’]

48

Work with Python Practical Python tips and projects

Work with Python
With a more solid understanding of Python, you can really begin to

make it work for you. It is a highly functional and versatile language,

and in this section, we’ll show you how to use this versatility in your

own projects. First, we’ll show you how to ditch the primary shell

and replace it using Python (p.50), then look at how NumPy can

help with scientific computing (p.58). We’ll also look at how Python

can help with system administration (p.64), and how you can use it

with Beautiful Soup to read Wikipedia offline (p.72). Get ready to use

Python to its full potential.

Put the powerful programming language to work

49

Work with PythonPractical Python tips and projects

Work with Python Replace your shell with Python

50

Python
www.python.org/doc

What you’ll need… Replace your shell
with Python
Python is a great programming language, but did
you know it can even replace your primary shell?

We all use shell on a daily basis. For most of us, shell is the gateway into

our Linux system. For years and even today, Bash has been the default

shell for Linux. But it is getting a bit long in the tooth.

No need to be offended: we still believe Bash is the best shell out

there when compared to some other UNIX shells such as Korn Shell

(KSH), C Shell (CSH) or even TCSH.

This tutorial is not about Bash being incapable, but it is about

how to breathe completely new life into the shell to do old things

conveniently and new things which were previously not possible, even

by a long shot. So, without further delay, let’s jump in.

While the Python programming language may require you to write

longer commands to accomplish a task (due to the way Python’s

modules are organised), this is not something to be particularly

concerned about. You can easily write aliases to the equivalent of the

Bash command that you intend to replace. Most of the time there

will be more than one way to do a thing, but you will need to decide

which way works best for you.

Python provides support for executing system commands directly

(via the os or subprocess module), but where possible we will focus

on Python-native implementations here, as this allows us to develop

portable code.

SECTION 1: Completing basic shell tasks in Python

1. File management
The Python module shutil provides support for file and directory

operations. It provides support for file attributes, directory copying,

archiving etc. Let’s look at some of its important functions.

shutil module

Work with PythonReplace your shell with Python

51

copy (src,dst): Copy the src file to the destination directory. In this

mode permissions bits are copied but metadata is not copied.

copy2 (src,dst): Same as copy() but also copies the metadata.

copytree(src, dst[, symlinks=False[, ignore=None]]): This is

similar to ‘cp -r’, it allows you to copy an entire directory.

ignore_patterns (*patterns): ignore_patterns is an interesting

function that can be used as a callable for copytree(), it allows you to

ignore files and directories specified by the glob-style patterns.

rmtree(path[, ignore_errors[, onerror]]): rmtree() is used to

delete an entire directory.

move(src,dst): Similar to mv command it allows you to recessively

move a file or directory to a new location.

Example:

 from shutil import copytree, ignore_patterns

 copytree(source, destination, ignore=ignore_patterns(‘*.

pyc’, ‘tmp*’))

make_archive(base_name, format[, root_dir[, base_dir[,

verbose[, dry_run[, owner[, group[, logger]]]]]]]: Think of

this as a replacement for tar, zip, bzip etc. make_archive() creates an

archive file in the given format such as zip, bztar, tar , gztar. Archive

support can be extended via Python modules.

Example:

 from shutil import make_archive

 import os

 archive_name = os.path.expanduser(os.path.join(‘~’,

‘ludarchive’))

 root_dir = os.path.expanduser(os.path.join(‘~’, ‘.ssh’))

 make_archive(archive_name, ‘gztar’, root_dir)

‘/Users/kunal/ludarchive.tar.gz’

2. Interfacing operating system & subprocesses
Python provides two modules to interface with the OS and to manage

processes, called os and subprocess. These modules let you interact

with the core operating system shell, and work with the environment,

processes, users and file descriptors. The subprocess module was

introduced to support better management of subprocesses (paalready

Above You may never need to use Bash
again, with some dedicated Python
modules at hand

52

in Python and is aimed to replace os.system, os.spawn*, os.popen,

popen2.* and commands.* modules.

os module

environ: environment represents the OS environment variables in a

string object.

Example:

 import os

 os.environ

{‘VERSIONER_PYTHON_PREFER_32_BIT’: ‘no’, ‘LC_CTYPE’: ‘UTF-

8’, ‘TERM_PROGRAM_VERSION’: ‘297’, ‘LOGNAME’: ‘kunaldeo’,

‘USER’: ‘kunaldeo’, ‘PATH’: ‘/System/Library/Frameworks/

Python.framework/Versions/2.7/bin:/Users/kunaldeo/narwhal/

bin:/opt/local/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/

sbin:/usr/local/bin:/usr/X11/bin:/opt/local/bin:/Applications/

MOTODEV_Studio_For_Android_2.0.0_x86/android_sdk/tools:/

Applications/MOTODEV_Studio_For_Android_2.0.0_x86/android_sdk/

platform-tools:/Volumes/CyanogenModWorkspace/bin’, ‘HOME’:

‘/Users/kunaldeo’, ‘PS1’: ‘\\[\\e[0;32m\\]\\u\\[\\e[m\\] \\

[\\e[1;34m\\]\\w\\[\\e[m\\] \\[\\e[1;32m\\]\\$\\[\\e[m\\] \\

[\\e[1;37m\\]’, ‘NARWHAL_ENGINE’: ‘jsc’, ‘DISPLAY’: ‘/tmp/launch-

s2LUfa/org.x:0’, ‘TERM_PROGRAM’: ‘Apple_Terminal’, ‘TERM’:

‘xterm-color’, ‘Apple_PubSub_Socket_Render’: ‘/tmp/launch-

kDul5P/Render’, ‘VERSIONER_PYTHON_VERSION’: ‘2.7’, ‘SHLVL’: ‘1’,

‘SECURITYSESSIONID’: ‘186a5’, ‘ANDROID_SDK’: ‘/Applications/

MOTODEV_Studio_For_Android_2.0.0_x86/android_sdk’,’_’: ‘/System/

Library/Frameworks/Python.framework/Versions/2.7/bin/python’,

‘TERM_SESSION_ID’: ‘ACFE2492-BB5C-418E-8D4F-84E9CF63B506’,

‘SSH_AUTH_SOCK’: ‘/tmp/launch-dj6Mk4/Listeners’, ‘SHELL’: ‘/bin/

bash’, ‘TMPDIR’: ‘/var/folders/6s/pgknm8b118737mb8psz8x4z80000

gn/T/’, ‘LSCOLORS’: ‘ExFxCxDxBxegedabagacad’, ‘CLICOLOR’: ‘1’,

‘__CF_USER_TEXT_ENCODING’: ‘0x1F5:0:0’, ‘PWD’: ‘/Users/kunaldeo’,

‘COMMAND_MODE’: ‘unix2003’}

You can also find out the value for an environment value:

 os.environ[‘HOME’]

‘/Users/kunaldeo’

Work with Python Replace your shell with Python

53

putenv(varname,value) : Adds or sets an environment variable with

the given variable name and value.

getuid() : Return the current process’s user id.

getlogin() : Returns the username of currently logged in user

getpid(pid) : Returns the process group id of given pid. When used

without any parameters it simply returns the current process id.

getcwd() : Return the path of the current working directory.

chdir(path) : Change the current working directory to the given path.

listdir(path) : Similar to ls, returns a list with the content of

directories and file available on the given path.

Example:

 os.listdir(“/home/homer”)

[‘.gnome2’, ‘.pulse’, ‘.gconf’, ‘.gconfd’, ‘.beagle’,

‘.gnome2_private’, ‘.gksu.lock’, ‘Public’, ‘.ICEauthority’,

‘.bash_history’, ‘.compiz’, ‘.gvfs’, ‘.update-notifier’,

‘.cache’, ‘Desktop’, ‘Videos’, ‘.profile’, ‘.config’, ‘.esd_

auth’, ‘.viminfo’, ‘.sudo_as_admin_successful’, ‘mbox’,

‘.xsession-errors’, ‘.bashrc’, ‘Music’, ‘.dbus’, ‘.local’,

‘.gstreamer-0.10’, ‘Documents’, ‘.gtk-bookmarks’, ‘Downloads’,

‘Pictures’, ‘.pulse-cookie’, ‘.nautilus’, ‘examples.desktop’,

‘Templates’, ‘.bash_logout’]

mkdir(path[, mode]) : Creates a directory with the given path with

the numeric code mode. The default mode is 0777.

makedirs(path[, mode]) : Creates given path (inclusive of all its

directories) recursively. The default mode is 0777. :

Example:

 import os

 path = “/home/kunal/greatdir”

 os.makedirs(path, 0755);

rename (old,new) : The file or directory “old” is renamed to “new” If

“new” is a directory, an error will be raised. On Unix and Linux, if “new”

exists and is a file, it will be replaced silently if the user has permission..

renames (old,new) : Similar to rename but also creates any directories

recessively if necessary.

Work with PythonReplace your shell with Python

Above A screenshot of the IPython Gt
console with GUI capabilities

54

rmdir(path) : Remove directory from the path mentioned. If the path

already has files you will need to use shutil.rmdtree()

subprocess:

call(*popenargs, **kwargs) : Runs the command with arguments.

On process completion it returns the returncode attribute.

Example:

 import subprocess

 print subprocess.call([“ls”,”-l”])

total 3684688

drwx------+ 5 kunaldeo staff 170 Aug 19 01:37 Desktop

drwx------+ 10 kunaldeo staff 340 Jul 26 08:30

 Documents

drwx------+ 50 kunaldeo staff 1700 Aug 19 12:50

 Downloads

drwx------@ 127 kunaldeo staff 4318 Aug 19 01:43 Dropbox

drwx------@ 42 kunaldeo staff 1428 Aug 12 15:17 Library

drwx------@ 3 kunaldeo staff 102 Jul 3 23:23 Movies

drwx------+ 4 kunaldeo staff 136 Jul 6 08:32 Music

drwx------+ 5 kunaldeo staff 170 Aug 12 11:26 Pictures

drwxr-xr-x+ 5 kunaldeo staff 170 Jul 3 23:23 Public

-rwxr-xr-x 1 kunaldeo staff 1886555648 Aug 16 21:02

 androidsdk.tar

drwxr-xr-x 5 kunaldeo staff 170 Aug 16 21:05 sdk

drwxr-xr-x 19 kunaldeo staff 646 Aug 19 01:47 src

-rw-r--r-- 1 root staff 367 Aug 16 20:36

 umbrella0.log

STD_INPUT_HANDLE: The standard input device. Initially, this is the

console input buffer.

STD_OUTPUT_HANDLE: The standard output device. Initially, this is the

active console screen buffer.

STD_ERROR_HANDLE: The standard error device. Initially, this is the active

console screen buffer.

Work with Python Replace your shell with Python

Above IPython previously offered a
notebook feature, enabling users to create
HTML documents where images, code
and mathematical formulae were correctly
formatted. This has since been split off into
a separate (but tightly integrated) service
called Jupyter

55

SECTION 2: IPython: a ready-made Python system
shell replacement

In section 1 we have introduced you to the Python modules which

allow you to do system shell-related tasks very easily using vanilla

Python. Using the same features, you can build a fully featured shell

and remove a lot of Python boilerplate code along the way. However,

if you are kind of person who wants everything ready-made, you are in

luck. IPython provides a powerful and interactive Python shell which

you can use as your primary shell. IPython supports Python 2.6 to 2.7

and 3.1 to 3.2 . It supports two type of Python shells: Terminal based

and Qt based.

Just to reiterate, IPython is purely implemented in Python and

provides a 100% Python-compliant shell interface, so everything that

you have learnt in section 1 so far can be run inside IPython without

any problems.

IPython is already available in most Linux distributions. Search your

distro’s repositories to look for it. In case you are not able to find it, you

can also install it using easy_install or PyPI.

IPython provides a lot of interesting features which makes it a great

shell replacement…

Tab completion: Tab completion provides an excellent way to explore

any Python object that you are working with. It also helps you to avoid

making typos.

Example :

In [3]: import o {hit tab}

objc opcode operator optparse os os2emxpath

In [3]: import os

In [4]: os.p {hit tab}

os.pardir os.pathconf_names os.popen os.popen4

os.path os.pathsep os.popen2 os.putenv

os.pathconf os.pipe os.popen3

Built In Object Explorer: You can add ‘?’ after any Python object

to view its details such as Type, Base Class, String Form, Namespace, File

and Docstring.

Work with PythonReplace your shell with Python

56

Example:

In [28]: os.path?

Type: module

Base Class: <type ‘module’>

String Form:<module ‘posixpath’ from ‘/System/Library/

Frameworks/Python.framework/Versions/2.7/lib/python2.7/

posixpath.pyc’>

Namespace: Interactive

File: /System/Library/Frameworks/Python.framework/

Versions/2.7/lib/python2.7/posixpath.py

Docstring:

Common operations on POSIX pathnames.

Instead of importing this module directly, import os and refer to this

module as os.path. The ‘os.path’ name is an alias for this module on

POSIX systems; on other systems (eg Mac, Windows), os.path provides

the same operations in a manner specific to that platform, and is an

alias to another module (eg macpath, ntpath).

Some of this can actually be useful on non-POSIX systems too, eg for

manipulation of the pathname component of URLs. You can also use

double question marks (??) to view the source code for the relevant object.

Magic functions: IPython comes with a set of predefined ‘magic

functions’ that you can call with a command-line-style syntax. IPython

‘magic’ commands are conventionally prefaced by %, but if the flag

%automagic is set to on, then you can call magic commands without

the %. To view a list of available magic functions, use ‘magic function

%lsmagic’. They include functions that work with code such as %run,

%edit, %macro, %recall etc; functions that affect shell such as %colors,

%xmode, %autoindent etc; and others such as %reset, %timeit, %paste

etc. Most cool features of IPython are powered using magic functions.

Example:

In [45]: %lsmagic

Available magic functions:

%alias %autocall %autoindent %automagic %bookmark %cd

%colors %cpaste %debug %dhist %dirs %doctest_mode %ed

%edit %env %gui %hist %history %install_default_config

%install_profiles %load_ext %loadpy %logoff %logon

%logstart %logstate %logstop %lsmagic %macro %magic

Work with Python Replace your shell with Python

57

%page %paste %pastebin %pdb %pdef %pdoc %pfile

%pinfo %pinfo2 %popd %pprint %precision %profile %prun

%psearch %psource %pushd %pwd %pycat %pylab %quickref

%recall %rehashx %reload_ext %rep %rerun %reset

%reset_selective %run %save %sc %sx %tb %time %timeit

%unalias %unload_ext %who %who_ls %whos %xdel %xmode

Automagic is OFF, % prefix IS needed for magic functions. To view help

on any Magic Function, call ‘%somemagic?’ to read its docstring.

Python script execution and runtime code editing: You can use %run

to run any Python script. You can also control-run the Python script with

pdb debugger using -d, or pdn profiler using -p. You can also edit a

Python script using the %edit command which opens the given Python

script in the editor defined by the $EDITOR environment variable.

Shell command support: To just run a shell command, prefix the

command with ! .

Example :

In [5]: !ps

 PID TTY TIME CMD

 4508 ttys000 0:00.07 -bash

84275 ttys001 0:00.03 -bash

17958 ttys002 0:00.18 -bash

In [8]: !clang prog.c -o prog

prog.c:2:1: warning: type specifier missing, defaults to

‘int’ [-Wimplicit-int]

main()

~̂~~

1 warning generated.

Qt console : IPython comes with a Qt-based console. This provides

features only available in a GUI, like inline figures, multiline editing with

syntax highlighting, and graphical calltips. Start the Qt console with:

 $ ipython qtconsole

If you get errors about missing modules, ensure that you have installed

dependent packages – PyQt, pygments, pyexpect and ZeroMQ.

Work with PythonReplace your shell with Python

Conclusion

As you can see, it’s easy to
tailor Python for all your shell
environment needs. Python
modules like os, subprocess
and shutil are available at
your disposal to do just about
everything you need using
Python. IPython turns this whole
experience into an even more
complete package. You get
to do everything a standard
Python shell does and with
much more convenient features.
IPython’s magic functions really
do provide a magical Python
shell experience. So next time
you open a Bash session, think
again: why settle for gold when
platinum is a step away?

Work with Python Scientific computing with NumPy

58

NumPy
www.numpy.org

SciPy
www.scipy.org

Matplotlib
www.matplotlib.org

What you’ll need… Scientific
computing
with NumPy
Make some powerful calculations with NumPy,
SciPy and Matplotlib

NumPy is the primary Python package for performing scientific

computing. It has a powerful N-dimensional array object, tools

for integrating C/C++ and Fortran code, linear algebra, Fourier

transform, and random number capabilities, among other things.

NumPy also supports broadcasting, which is a clever way for

universal functions to deal in a meaningful way with inputs that do

not have exactly the same form.

Apart from its capabilities, the other advantage of NumPy is that it

can be integrated into Python programs. In other words, you may

get your data from a database, the output of another program, an

external file or an HTML page and then process it using NumPy.

This article will show you how to install NumPy, make calculations,

plot data, read and write external files, and it will introduce you to

some Matplotlib and SciPy packages that work well with NumPy.

NumPy also works with Pygame, a Python package for creating

games, though explaining its use is unfortunately beyond of the

scope of this article.

It is considered good practice to try the various NumPy

commands inside the Python shell before putting them into

Python programs. The examples in this article use either Python

shell or iPython.

“Apart from its capabilities, the other
advantage of NumPy is that it can be
integrated into Python programs”

Work with PythonScientific computing with NumPy

59

03 Given an array named myArray,

you can find the minimum and

maximum values in it by executing the

following commands:

 >>> myArray.min()

 >>> myArray.max()

Should you wish to find the mean value

of all array elements, you can run the

next command:

 >>> myArray.mean()

Similarly, you can find the median of the

Making simple calculations
using NumPy

02 Despite its simplistic name,

NumPy is a powerful Python

package that is mainly for working

with arrays and matrices. There are

many ways to create an array but the

simplest one is to make use of the

array() function:

 >>> oneD = array([1,2,3,4])

The aforementioned command

creates a one-dimensional array. If you

want to create a two-dimensional

array, you can use the array() function

About NumPy

01 Most Linux distributions have a

ready-to-install package you can

use. After installation, you can find out

the NumPy version you are using by

executing the following:

 $ python

 Python 2.7.3 (default, Mar 13

2014, 11:03:55)

 [GCC 4.7.2] on linux2

 Type “help”, “copyright”,

“credits” or “license” for

more information.

 >>> numpy.version.version

 Traceback (most recent call

last):

 File “<stdin>”, line 1, in

<module>

 NameError: name ‘numpy’ isnot

Installing NumPy

A simple Python

program for

Polynomial Fitting

A Python script

that uses SciPy to

process an image

Matplotlib

generated output

Finding help

is easy

defined

 >>> import numpy

 >>> numpy.version.version

 ‘1.6.2’

as follows:

 >>> twoD = array([[1,2,3],

 >>>

Not only have you found the NumPy

version but you also know that NumPy

is properly installed.

 ... [3,3,3],

 ... [-1,-0.5,4],

 ... [0,1,0]])

You can also create arrays with some

more dimensions.

60

06 Writing variables to a file

is largely similar to reading

Writing to files

07 NumPy supports many

numerical and statistical

functions. When you apply a function

to an array, the function is then

automatically applied to all of the

array elements.

When working with matrices, you

can find the inverse of a matrix AA

by typing “AA.I”. You can also find

its eigenvalues by typing “np.linalg.

eigvals(AA)” and its eigenvector by

typing “np.linalg.eig(BB)”.

Common functions

Work with Python Scientific computing with NumPy

08 A special subtype of a two-

dimensional NumPy array is

a matrix. A matrix is like an array except

that matrix multiplication replaces

element-by-element multiplication.

Matrices are generated using

the matrix (or mat) function as follows:

 In [2]: AA = np.mat(‘0 1 1; 1

Working with matrices

array by running the following

Python command:

 >>> median(myArray)

The median value of a set is an element

that divides the data set into two

subsets (left and right subsets) with the

same number of elements. If the data

set has an odd number of elements,

then the median is part of the data set.

On the other side, if the data set has an

even number of elements, then the

median is the mean value of the two

centre elements of the sorted data set.

“When you apply
a function to an
array, the function
is automatically
applied to all of the
array elements”

04 NumPy not only embraces

the indexing methods used

in typical Python for strings and lists

but also extends them. If you want to

select a given element from an array,

you can use the following notation:

 >>> twoD[1,2]

You can also select a part of an array (a

slice) using the following notation:

 >>> twoD[:1,1:3]

Finally, you can convert an array into a

Python list using the tolist() function.

Using arrays with NumPy

05 Imagine that you have just

extracted information from an

Apache log file using AWK and you

now want to go and process the text

file using NumPy.

The following AWK code finds out

the total number of requests per hour:

 $ cat access.log | cut -d[

-f2 | cut -d] -f1 | awk -F:

‘{print $2}’ | sort -n | uniq

-c | awk ‘{print $2, $1}’ >

timeN.txt

The format of the text file (timeN.txt)

with the data is the following:

 00 191

 01 225

 02 121

 03 104

Reading the timeN.txt file and

assigning it to a new array variable can

be done as follows:

 aa = np.loadtxt(“timeN.txt”)

Reading files

a file. If you have an array variable

named aa1, you can easily save its

contents into a file called aa1.txt by

using the following command:

 In [17]: np.savetxt(“aa1.txt”,

aa1)

As you can easily imagine, you can

read the contents of aa1.txt later by

using the loadtxt() function.

1 1; 1 1 1’)

61

Work with PythonScientific computing with NumPy

09The first move you should

make is to install Matplotlib.

As you can see, Matplotlib has many

Plotting with Matplotlib

You can add matrices named AA and

BB by typing AA + BB. Similarly, you

can multiply them by typing AA * BB. “Try the various
NumPy
commands inside
the Python shell”

dependencies that you should

also install. The first thing you will

learn is how to plot a polynomial

function. The necessary commands

for plotting the 3x̂ 2-x+1

polynomial are the following:

 import numpy as np

 import matplotlib.pyplot

62

Work with Python Scientific computing with NumPy

12 It is very useful to be able to

find out the data type of the

elements in an array; it can be done

using the dtype() function. Similarly,

the ndim() function returns the

number of dimensions of an array.

When reading data from external

files, you can save their data columns

into separate variables using the

following method:

 In [10]: aa1,aa2 =

Other useful functions

11 Now we will show you how

to process and transform a

PNG image using SciPy. The most

important part of the code is the

following line:

 image = np.array(Image.

open(‘SA.png’).convert(‘L’))

This line allows you to read a usual

PNG file and convert it into a NumPy

array for additional processing. The

program will also separate the output

into four parts and displays a different

image for each of these four parts.

Using SciPy for
image processing

10 SciPy is built on top of NumPy

and is significantly more

advanced than NumPy. It supports

numerical integration, optimisations,

signal processing, image and

audio processing, and statistics. For

reference, the example below uses just

About SciPy

one small part of the scipy.stats

package about statistics.

 In [36]: from scipy.stats

import poisson, lognorm

 In [37]: mySh = 10;

 In [38]: myMu = 10;

 In [39]: ln =

lognorm(mySh)

 In [40]: p = poisson(myMu)

 In [41]: ln.rvs((10,))

 Out[41]:

 array([9.29393114e-

02, 1.15957068e+01,

9.78411983e+01,

 8.26370734e-

07, 5.64451441e-03,

4.61744055e-09,

 4.98471222e-

06, 1.45947948e+02,

9.25502852e-06,

 5.87353720e-02])

 In [42]: p.rvs((10,))

 Out[42]: array([12, 11, 9,

9, 9, 10, 9, 4, 13, 8])

 In [43]: ln.pdf(3)

 Out[43]:

0.013218067177522842

The example uses two statistics

distributions and may be difficult

to understand, but it is presented

in order to give you a better taste

of SciPy commands.

as plt

 myPoly = np.poly1d(np.

array([3, -1, 1]).

astype(float))

 x = np.linspace(-5, 5, 100)

 y = myPoly(x)

 plt.xlabel(‘x values’)

 plt.ylabel(‘f(x) values’)

 xticks = np.arange(-5, 5, 10)

 yticks = np.arange(0, 100,

10)

 plt.xticks(xticks)

 plt.yticks(yticks)

 plt.grid(True)

 plt.plot(x,y)

The variable that holds the

polynomial is myPoly. The range of

values that will be plotted for x is

defined using “x = np.linspace(-5, 5,

100)”. The other important variable

is y, which calculates and holds the

values of f(x) for each x value.

It is important that you start

ipython using the “ipython

--pylab=qt” parameters in order

to see the output on your screen.

If you are interested in plotting

polynomial functions, you should

experiment more, as NumPy can

also calculate the derivatives of a

function and plot multiple functions

in the same output.

“For plotting
polynomial
functions,
experiment more”

63

Work with PythonScientific computing with NumPy

14To close, we will talk more about

array broadcasting because it

is a very useful characteristic. First, you

Array broadcasting
in NumPy

13 The NumPy polyfit() function

tries to fit a set of data points

to a polynomial. The data was found

from the timeN.txt file, created earlier.

Fitting to polynomials

The Python script uses a fifth degree

polynomial, but if you want to use a

different degree instead then you only

have to change the following line:

 coefficients = np.polyfit(aa1,

aa2, 5)

should know that array broadcasting

has a rule: in order for two arrays to

be considered for array broadcasting,

“the size of the trailing axes for both

arrays in an operation must either be

the same size or one of them must

be one.”

Put simply, array broadcasting

allows NumPy to “change” the

dimensions of an array by filling

it with data in order to be able to

do calculations with another array.

Nevertheless, you cannot stretch

both dimensions of an array to do

your job.

Above Fitting to Polynomials

np.loadtxt(“timeN.txt”,

usecols=(0,1), unpack=True)

The aforementioned command saves

column 1 into variable aa1 and column

2 into variable aa2. The “unpack=True”

allows the data to be assigned to two

different variables. Please note that the

numbering of columns starts with 0.

Work with Python Python for system administrators

64

Python-devel
Python development libraries, required
for compiling third-party Python
module

setuptools
setuptools allows you to download,
build, install, upgrade, and uninstall
Python packages with ease

What you’ll need…

Note

This is written for the Python
2.X series, as it is still the most
popular and default Python
distribution across all the
platforms (including all Linux
distros, BSDs and Mac OS X).

Python for system
administrators
Learn how Python can help by daring to replace the
usual shell scripting…

System administration is an important part of our computing

environment. It does not matter whether you are managing systems

at your work our home. Linux, being a UNIX-based operating system,

already has everything a system administrator needs, such as the

world-class shells (not just one but many, including Bash, csh, zsh etc),

handy tools, and many other features which make the Linux system an

administrator’s dream. So why do we need Python when Linux already

has everything built-in? Being a dynamic scripting language, Python

is very easy to read and learn. That’s just not us saying that, but many

Linux distributions actually use Python in core administrative parts. For

example, Red Hat (and Fedora) system setup tool Anaconda is written

in Python (read this line again, got the snake connection?). Also, tools like

GNU Mailman, CompizConfig Settings Manager (CCSM) and hundreds

of tiny GUI and non-GUI configuration tools are written using Python.

Python does not limit you on the choice of user interface to follow – you

can build command-line, GUI and web apps using Python. This way, it

has got covered almost all the possible interfaces. Here we will look into

executing sysadmin-related tasks using Python.

Parsing configuration files
Configuration files provide a way for applications to store various

settings. In order to write a script that allows you to modify settings of

a particular application, you should be able to parse the configuration

file of the application. In this section we learn how to parse INI-style

configuration files. Although old, the INI file format is very popular with

much modern open source software, such as PHP and MySQL.

Excerpt for php.ini configuration file:

 [PHP]

 engine = On

Work with PythonPython for system administrators

65

 zend.ze1_compatibility_mode = Off

 short_open_tag = On

 asp_tags = Off

 precision = 14

 y2k_compliance = On

 output_buffering = 4096

 ;output_handler =

 zlib.output_compression = Off

 [MySQL]

 ; Allow or prevent persistent links.

 mysql.allow_persistent = On

 mysql.max_persistent = 20

 mysql.max_links = -1

 mysql.default_port = 3306

 mysql.default_socket =

 mysql.default_host = localhost

 mysql.connect_timeout = 60

 mysql.trace_mode = Off

Python provides a built-in module called

ConfigParser (known as configparser in Python

3.0). You can use this module to parse and create

configuration files.

@code: writeconfig.py

@description: The following demonstrates adding

MySQL section to the php.ini file.

@warning: Do not use this script with the actual php.

ini file, as it’s not designed to handle all aspects of a

complete php.ini file.

 import ConfigParser

 config = ConfigParser.RawConfigParser()

 config.add_section(‘MySQL’)

 config.set(‘MySQL’,’mysql.trace_mode’,’Off’)

 config.set(‘MySQL’,’mysql.connect_

timeout’,’60’)

 config.set(‘MySQL’,’mysql.default_

host’,’localhost’)

 config.set(‘MySQL’,’mysql.default_

port’,’3306’)

 config.set(‘MySQL’,’mysql.allow_persistent’,

‘On’)

 config.set(‘MySQL’,’mysql.max_

persistent’,’20’)

 with open(‘php.ini’, ‘ap’) as configfile:

 config.write(configfile)

 Output:php.ini

 [MySQL]

 mysql.max_persistent = 20

 mysql.allow_persistent = On

 mysql.default_port = 3306

 mysql.default_host = localhost

 mysql.trace_mode = Off

 mysql.connect_timeout = 60

 @code: parseconfig.py

 @description: Parsing and updating the

config file

 import ConfigParser

 config = ConfigParser.ConfigParser()

 config.read(‘php.ini’)

 # Print config values

 print config.get(‘MySQL’,’mysql.default_

host’)

 print config.get(‘MySQL’,’mysql.default_

port’)

 config.remove_option(‘MySQL’,’mysql.trace_

mode’)

 with open(‘php.ini’, ‘wb’) as configfile:

 config.write(configfile)

Parsing JSON data
JSON (also known as JavaScript Object Notation) is a

lightweight modern data-interchange format. JSON is

an open standard under ECMA-262. It is a text format

66

and is completely language-independent. JSON is

also used as the configuration file format for modern

applications such as Mozilla Firefox and Google

Chrome. JSON is also very popular with modern

web services such as Facebook, Twitter, Amazon EC2

etc. In this section we will use the Python module

‘simplejson’ to access Yahoo Search (using the Yahoo

Web Services API), which outputs JSON data.

To use this section, you should have the following:

1. Python module: simplejson.

Note: You can install Python modules using the

command ‘easy_install <module name>’. This

command assumes that you have a working internet

connection.

2. Yahoo App ID:

The Yahoo App ID can be created from https://

developer.apps.yahoo.com/dashboard/createKey.

html. The Yahoo App ID will be generated on the

next page. See the screenshot below for details.

simplejson is very easy to use. In the following

example we will use the capability of mapping

JSON data structures directly to Python data types.

This gives us direct access to the JSON data without

developing any XML parsing code.

JSON PYTHON DATA MAPPING

JSON Python

object dict

array list

string unicode

number (int) int, long

number (real) float

TRUE TRUE

FALSE FALSE

null None

For this section we will use the simplejson.load

function, which allows us to deserialise a JSON object

into a Python object.

 @code: LUDSearch.py

 import simplejson, urllib

 APP_ID = ‘xxxxxxxx’ # Change this to

your APP ID

 SEARCH_BASE = ‘http://search.yahooapis.

com/WebSearchService/V1/webSearch’

 class YahooSearchError(Exception):

 pass

 def search(query, results=20, start=1,

**kwargs):

 kwargs.update({

 ‘appid’: APP_ID,

 ‘query’: query,

 ‘results’: results,

 ‘start’: start,

 ‘output’: ‘json’

 })

 url = SEARCH_BASE + ‘?’ + urllib.

urlencode(kwargs)

 result = simplejson.load(urllib.

urlopen(url))

 if ‘Error’ in result:

 # An error occurred; raise an

exception

 raise YahooSearchError,

result[‘Error’]

 return result[‘ResultSet’]

Let’s use the code listed above from the Python shell

to see how it works. Change to the directory where

you have saved the LUDYSearch.py and open a

Python shell.

 @code: Python Shell Output. Lines

Work with Python Python for system administrators

67

Above Generating the Yahoo App ID

starting with ‘>>>’ indicate input

 >>> execfile(“LUDYSearch.py”)

 >>> results = search(‘Linux User and

Developer’)

 >>> results[‘totalResultsAvailable’]

 123000000

 >>> results[‘totalResultsReturned’]

 20

 >>> items = results[‘Result’]

 >>> for Result in items:

 ... print Result[‘Title’],Result[‘Url’]

 ...

Linux User http://www.linuxuser.co.uk/

Linux User and Developer - Wikipedia, the free

encyclopedia http://en.wikipedia.org/wiki/Linux_

User_and_Developer

Linux User &amp; Developer | Linux User http://

www.linuxuser.co.uk/tag/linux-user-developer/

Gathering system information
An important job for a system administrator is

gathering system information. Here we will use the

SIGAR (System Information Gatherer And Reporter)

API to demonstrate how we can gather system

information using Python. SIGAR is a very complete

API and can provide lots of information, including:

1. System memory, swap, CPU, load average,

uptime, logins.

Work with PythonPython for system administrators

68

2. Per-process memory, CPU, credential info, state,

arguments, environment, open files.

3. File system detection and metrics.

4. Network interface detection, configuration info

and metrics.

5. TCP and UDP connection tables.

6. Network route table.

Installing SIGAR
The first step is to build and install SIGAR. SIGAR is

hosted at GitHub, so make sure that you have Git

installed in your system. Then perform the following

steps to install SIGAR and its Python bindings:

 $ git clone git://github.com/hyperic/

sigar.git sigar.git

 $ cd sigar.git/bindings/python

 $ sudo python setup.py install

At the end you should see a output similar to the

following :

Writing /usr/local/lib/python2.6/dist-packages/

pysigar-0.1.egg-info

SIGAR is a very easy-to-use library and can be used to

get information on almost every aspect of a system.

The next example shows you how to do this. The

following code shows the memory and the file

system information.

 @code: PySysInfo.py

 import os

 import sigar

 sg = sigar.open()

 mem = sg.mem()

 swap = sg.swap()

 fslist = sg.file_system_list()

 print “==========Memory

Information==============”

 print “\tTotal\tUsed\tFree”

 print “Mem:\t”,\

 (mem.total() / 1024), \

 (mem.used() / 1024), \

 (mem.free() / 1024)

 print “Swap:\t”, \

 (swap.total() / 1024), \

 (swap.used() / 1024), \

 (swap.free() / 1024)

 print “RAM:\t”, mem.ram(), “MB”

 print “==========File System

Information=============”

 def format_size(size):

 return sigar.format_size(size * 1024)

 print ‘Filesystem\tSize\tUsed\tAvail\

tUse%\tMounted on\tType\n’

 for fs in fslist:

 dir_name = fs.dir_name()

 usage = sg.file_system_usage(dir_

name)

 total = usage.total()

 used = total - usage.free()

 avail = usage.avail()

 pct = usage.use_percent() * 100

 if pct == 0.0:

 pct = ‘-’

 print fs.dev_name(), format_

size(total), format_size(used), format_

size(avail),\

 pct, dir_name, fs.sys_type_

name(), ‘/’, fs.type_name()

 @Output

 ==========Memory

Information==============

 Total Used Free

 Mem: 8388608 6061884 2326724

 Swap: 131072 16048 115024

 RAM: 8192 MB

 ==========File System

Information============

 Filesystem Size Used Avail

Use% Mounted on Type

Work with Python Python for system administrators

69

 /dev/disk0s2 300G 175G 124G 59.0 / hfs /

local

 devfs 191K 191K 0 - /dev devfs /

none

Accessing Secure Shell (SSH) services
SSH (Secure Shell) is a modern replacement for an

old remote shell system called Telnet. It allows data to

be exchanged using a secure channel between two

networked devices. System administrators frequently

use SSH to administrate networked systems. In

addition to providing remote shell, SSH is also used

for secure file transfer (using SSH File Transfer Protocol,

or SFTP) and remote X server forwarding (allows

you to use SSH clients as X server). In this section we

will learn how to use the SSH protocol from Python

using a Python module called paramiko, which

implements the SSH2 protocol for Python.

paramiko can be installed using the following steps:

 $ git clone https://github.com/robey/

paramiko.git

 $ cd paramiko

 $ sudo python setup.py install

To the core of paramiko is the SSHClient class. This

class wraps L{Transport}, L{Channel}, and L{SFTPClient}

to handle most of the aspects of SSH. You can use

SSHClient as:

 client = SSHClient()

 client.load_system_host_keys()

 client.connect(‘some.host.com’)

 stdin, stdout, stderr = client.exec_

command(‘dir’)

The following example demonstrates a full SSH client

written using the paramiko module.

 @code: PySSHClient.py

 import base64, getpass, os, socket, sys,

socket, traceback

 import paramiko

 import interactive

 # setup logging

 paramiko.util.log_to_file(‘demo_simple.

log’)

 # get hostname

 username = ‘’

 if len(sys.argv) > 1:

 hostname = sys.argv[1]

 if hostname.find(‘@’) >= 0:

 username, hostname = hostname.

split(‘@’)

 else:

 hostname = raw_input(‘Hostname: ‘)

 if len(hostname) == 0:

 print ‘*** Hostname required.’

 sys.exit(1)

 port = 22

 if hostname.find(‘:’) >= 0:

 hostname, portstr = hostname.

split(‘:’)

 port = int(portstr)

 # get username

 if username == ‘’:

 default_username = getpass.getuser()

 username = raw_input(‘Username [%s]:

‘ % default_username)

 if len(username) == 0:

 username = default_username

 password = getpass.getpass(‘Password for

%s@%s: ‘ % (username, hostname))

 # now, connect and use paramiko Client

to negotiate SSH2 across the connection

 try:

 client = paramiko.SSHClient()

 client.load_system_host_keys()

 client.set_missing_host_key_

policy(paramiko.WarningPolicy)

Work with PythonPython for system administrators

70

 print ‘*** Connecting...’

 client.connect(hostname, port,

username, password)

 chan = client.invoke_shell()

 print repr(client.get_transport())

 print ‘*** SSH Server Connected!

***’

 print

 interactive.interactive_shell(chan)

 chan.close()

 client.close()

 except Exception, e:

 print ‘*** Caught exception: %s:

%s’ % (e.__class__, e)

 traceback.print_exc()

 try:

 client.close()

 except:

 pass

 sys.exit(1)

To run this code you will also need a custom Python

class interactive.py which implements the interactive

shell for the SSH session. Look for this file on FileSilo

and copy it into the same folder where you have

created PySSHClient.py .

 @code_Output

 kunal@ubuntu-vm-kdeo:~/src/paramiko/

demos$ python demo_simple.py

 Hostname: 192.168.1.2

 Username [kunal]: luduser

 Password for luduser@192.168.1.2:

 *** Connecting...

 <paramiko.Transport at 0xb76201acL

(cipher aes128-ctr, 128 bits) (active; 1

open channel(s))>

 *** SSH Server Connected! ***

 Last login: Thu Jan 13 02:01:06 2011

from 192.168.1.9

 [~ $:]

If the host key for the SSH server is not added to your

$HOME/.ssh/known_hosts file, the client will throw

the following error:

 *** Caught exception: <type ‘exceptions.

TypeError’>: unbound method missing_

host_key() must be called with

WarningPolicy instance as first

argument (got SSHClient instance

instead)

This means that the client cannot verify the

authenticity of the server you are connected to. To

add the host key to known_hosts, you can use the

ssh command. It is important to remember that this

is not the ideal way to add the host key; instead you

should use ssh-keygen. But for simplicity’s sake we

are using the ssh client.

 kunal@ubuntu-vm-kdeo:~/.ssh$ ssh

luduser@192.168.1.2

 The authenticity of host ‘192.168.1.2

(192.168.1.2)’ can’t be established.

 RSA key fingerprint is be:01:76:6a:b9:bb:6

9:64:e3:dc:37:00:a4:36:33:d1.

 Are you sure you want to continue

connecting (yes/no)? yes

 Warning: Permanently added ‘192.168.1.2’

(RSA) to the list of known hosts.

So now you’ve seen just how easy it can be to carry

out the complex sysadmin tasks using Python’s

versatile language.

As is the case with all Python coding, the code that

is presented here can fairly easily be adopted into

your GUI application (using software such as PyGTK

or PyQt) or a web application (using a framework

such as Django or Grok).

Work with Python Python for system administrators

71

Work with Python

Writing a user interface using Python

Administrators are comfortable with running raw scripts by
hand, but end-users are not. So if you are writing a script that
is supposed to be used by common users, it is a good idea to
create a user-friendly interface on top of the script. This way
end-users can run the scripts just like any other application. To
demonstrate this, we will create a simple GRUB configuration
tool which allows users to select default boot entry and
the timeout. We will be creating a TUI (text user interface)
application and will use the Python module ‘snack’ to facilitate
this (not to be confused with the Python audio library, tksnack).

This app consists of two files…

grub.py: GRUB Config File (grub.conf) Parser (available on
FileSilo). It implements two main functions, readBootDB() and
writeBootFile(), which are responsible for reading and writing
the GRUB configuration file.
grub_tui.py: Text user interface file for manipulating the GRUB
configuration file using the functions available in grub.py.

 @code:grub_tui.py

 import sys

 from snack import *

 from grub import (readBootDB, writeBootFile)

 def main(entry_value=’1’,kernels=[]):

 try:

 (default_value, entry_value,

kernels)=readBootDB()

 except:

 print >> sys.stderr, (“Error reading /boot/

grub/grub.conf.”)

 sys.exit(10)

 screen=SnackScreen()

 while True:

 g=GridForm(screen, (“Boot configuration”),1,5)

 if len(kernels)>0 :

 li=Listbox(height=len(kernels), width=20,

returnExit=1)

 for i, x in enumerate(kernels):

 li.append(x,i)

 g.add(li, 0, 0)

 li.setCurrent(default_value)

 bb = ButtonBar(screen, (((“Ok”), “ok”),

((“Cancel”), “cancel”)))

 e=Entry(3, str(entry_value))

 l=Label((“Timeout (in seconds):”))

 gg=Grid(2,1)

 gg.setField(l,0,0)

 gg.setField(e,1,0)

 g.add(Label(‘’),0,1)

 g.add(gg,0,2)

 g.add(Label(‘’),0,3)

 g.add(bb,0,4,growx=1)

 result = g.runOnce()

 if bb.buttonPressed(result) == ‘cancel’:

 screen.finish()

 sys.exit(0)

 else:

 entry_value = e.value()

 try :

 c = int(entry_value)

 break

 except ValueError:

 continue

 writeBootFile(c, li.current())

 screen.finish()

 if __name__== ‘__main__’:

 main()

Start the tool using the sudo command (as it reads the grub.
conf file)

 $ sudo grub_tui.py

Python for system administrators

Work with Python Scrape Wikipedia with Beautiful Soup

72

Beautiful Soup
www.crummy.com/software/
BeautifulSoup/

HTML5Lib
https://github.com/html5lib/
html5lib-python

Python 2.6+ & WikiParser.
zip Six
https://pypi.python.org/pypi/six/

What you’ll need…

Infinite Links

Wikipedia has a lot of links and
when you start following links
to links to links, the number of
pages you have to parse can
grow exponentially, depending
on the subject matter. By passing
through the levels value, we put a
cap on the amount of pages we
can grab–- although the number
of files stored can still vary greatly.
Use it wisely.

Scrape
Wikipedia with
Beautiful Soup
Use the Beautiful Soup Python library to parse
Wikipedia’s HTML and store it for offline reading

In this tutorial we’ll use the popular Python library Beautiful Soup to

scrape Wikipedia for links to articles and then save those pages for offline

reading. This is ideal for when travelling or in a location with a poor

internet connection.

The plan is simple: using Beautiful Soup with the HTML5Lib Parser,

we’re going to load a Wikipedia page, remove all of the GUI and

unrelated content, search the content for links to other Wikipedia articles

and then, after a tiny bit of modification, write them to a file.

Even though it’s now the de facto knowledge base of the world,

Wikipedia isn’t great when it comes to DOM consistency – that is, IDs and

classes are sometimes quite loose in their usage. Because of this, we will

also cover how to handle all of the excess bits and bobs of the Wikipedia

GUI that we don’t need, as well as the various erroneous links that won’t

be of much use to us. You can find the CSS stylings sheet and a Python

script pertaining to this tutorial at http://bit.ly/19MibBv.

01 Before we can start writing code, we need to install the libraries we’ll be using

for the program (Beautiful Soup, HTML5Lib, Six). The installation process is

fairly standard: grab the libraries from their respective links, then unzip them. In

the terminal, enter the unzipped directory and run python setup.py install for each

library. They will now be ready for use.

Install Beautiful Soup & HTML5Lib

“Wikipedia isn’t great when it comes
to DOM consistency”

Work with PythonScrape Wikipedia with Beautiful Soup

73

Full code listing

import os, sys, urllib2, argparse, datetime, atexit

from bs4 import BeautifulSoup

addresses = []

deepestAddresses = []

maxLevel = 1

storeFolder = “Wikistore “ + str(datetime.datetime.now().strftime(“%Y-%m-%d %H:%M”))

undesirables = [{“element” : “table”, “attr” : {‘class’ : ‘infobox’} }, {“element” :

“table”, “attr” : {‘class’ : ‘vertical-navbox’}}, {“element” : “span”, “attr” : {‘class’

: ‘mw-editsection’}}, {“element” : “div”, “attr” : {‘class’ : ‘thumb’}}, {“element”

: “sup”, “attr” : {‘class’ : ‘reference’}}, {“element” : “div”, “attr” : {‘class’ :

‘reflist’}}, {“element” : “table”, “attr” : {‘class’ : ‘nowraplinks’}}, {“element” :

“table”, “attr” : {‘class’ : ‘ambox-Refimprove’}}, {“element” : “img”, “attr” : None},

{“element” : “script”, “attr” : None}, {“element” : “table”, “attr” : {‘class’ :

‘mbox-small’}} , {“element” : “span”, “attr” : {“id” : “coordinates”}}, {“element” :

“table”, “attr” : {“class” : “ambox-Orphan”}}, {“element” : “div”, “attr” : {“class” :

“mainarticle”}}, {“element” : None, “attr” : {“id” : “References”}}]

def init():

 parser = argparse.ArgumentParser(description=’Handle the starting page and number

of levels we\’re going to scrape’)

 parser.add_argument(‘-URL’, dest=’link’, action=’store’, help=’The Wikipedia page

from which we will start scraping’)

 parser.add_argument(‘-levels’, dest=”levels”, action=’store’, help=’How many levels

deep should the scraping go’)

 args = parser.parse_args()

 if(args.levels != None):

 global maxLevel8

 maxLevel = int(args.levels)

 if(args.link == None):

 print(“You need to pass a link with the -URL flag”)

 sys.exit(0)

 else:

 if not os.path.exists(storeFolder):

 os.makedirs(storeFolder)

 grabPage(args.link, 0, args.link.split(“/wiki/”)[1].strip().replace(“_”, “ “))

 atexit.register(cleanUp)

def isValidLink(link):

 if “/wiki/” in link and “:” not in link and “http://” not in link and “wikibooks”

not in link and “#” not in link and “wikiquote” not in link and “wiktionary” not in

link and “wikiversity” not in link and “wikivoyage” not in link and “wikisource” not

in link and “wikinews” not in link and “wikiversity” not in link and “wikidata” not

in link:

 return True

 else:

 return False

def grabPage(URL, level, name):

 opener = urllib2.build_opener()

 opener.addheaders = [(‘User-agent’, ‘Mozilla/5.0’)]

 req = opener.open(URL)

01

02

03

04

1 Import libraries

These are the

libraries we are

going to be using

for this program

2 Set up variables

These are some

variables we’ll use

to keep track of the

script’s progress

3 Initialisation

This is the initialising

function that we

will use to handle

the input coming

from the user

74

“The HTML page uses built-in browser
styles when rendering the page”

03 In the first few lines of this function, we’re just creating a helper statement.

Afterwards, we’re parsing any arguments passed into the program on its

execution and looking for a -URL flag and a -levels flag. The -levels flag is optional as

we already have a preset depth that we’ll follow the links to, but we need a link to

start from so if the -URL flag is missing, we’ll prompt the user and exit. If we have a link,

then we quickly check whether or not we have a directory to store files in – which

we’ll create if we don’t – and then we’ll fire off the function to get that page. Finally, we

register a handler for when the script tries to exit. We’ll get to that bit later.

Handling the user’s input

04 Here we’re using URLLib2 to request the page the the user has asked for

and then, once we’ve received that page, we’re going to pass the content

through to Beautiful Soup with the soup variable. This gives us access to the

methods we’re going to call as we parse the document.

Retrieving the page from the URL

Work with Python Scrape Wikipedia with Beautiful Soup

02 These variables will keep track of the links we’ve accessed while the script

has been running: addresses is a list containing every link we’ve accessed;

deepestAddresses are the links of the pages that were the furthest down the link

tree from our starting point; storeFolder is where we will save the HTML files we

create and maxLevel is the maximum depth that we can follow the links to from

our starting page.

Creating some useful variables
Wiki-Everything

Wikipedia has so many different
services that interlink with each
other; however, we don’t want
to grab those pages, so we’ve
got quite a lengthy conditional
statement to stop that. It’s pretty
good at making sure we only get
links from Wikipedia.

05 Wikipedia has a lot of nodes that we don’t want to parse. The content

variable allows us to straight away ignore most of Wikipedia’s GUI, but

there are still lots of elements that we don’t want to parse. We remedy this by

iterating through the list ‘undesirables’ that we created earlier on in the document.

For each different div/section/node that we don’t want, we call Beautiful Soup’s

find_all() method and use the extract() method to remove that node from the

document. At the end of the undesirables loop, most of the content we don’t

want any more will be gone. We also look for the ‘also’ element in the Wiki page.

Generally, everything after this div is of no use to us. By calling the find_all_next()

method on the also node, we can get a list of every other element we can

remove from that point on.

Trimming the fat

75

“Wikipedia has so many different services that interlink with
each other; we don’t want to grab those pages”

Work with PythonScrape Wikipedia with Beautiful Soup

 page = req.read()

 req.close()

 soup = BeautifulSoup(page, “html5lib”, from_encoding=”UTF-8”)

 content = soup.find(id=”mw-content-text”)

 if hasattr(content, ‘find_all’):

 global undesirables

 for notWanted in undesirables:

 removal = content.find_all(notWanted[‘element’], notWanted[‘attr’])

 if len(removal) > 0:

 for el in removal:

 el.extract()

 also = content.find(id=”See_also”)

 if(also != None):

 also.extract()

 tail = also.find_all_next()

 if(len(tail) > 0):

 for element in tail:

 element.extract()

 for link in content.find_all(‘a’):

 href = link[“href”]

 if isValidLink(href):

 if level < maxLevel:

 stored = False;

 for addr in addresses:

 if addr == link.get(“href”):

 stored = True

 if(stored == False):

 title = link.get(‘href’).replace(“/wiki/”, “”)

 addresses.append(str(title + “.html”))

 grabPage(“http://en.wikipedia.org” + link.get(‘href’), level +

1, title)

 print title

 link[“href”] = link[“href”].replace(“/wiki/”, “”) + “.html”

 fileName = str(name)

 if level == maxLevel:

 deepestAddresses.append(fileName.replace(‘/’, ‘_’) + “.html”)

Styling

Currently, the HTML page will use the
built-in browser styles when rendering the
page. If you like, you can include the style
sheet included in the tutorial resources
to make it look a little nicer. To use it, you
can minify the script and include it inside
a <style> tag in the head string on line
102, or you can rewrite the head string to
something like:

head = “<head><meta

charset=\”UTF-8\” /><title>” +

fileName + “</title><style>” +

str(open(“/PATH/TO/STYLES”, ‘r’).

read()) + “</style></head>”

04

05

06

4 Get the page

Here we grab the

page we want to

store and remove

the bits of the

document we

don’t need

5 Check links

Then we iterate

through all of the

<a> tags and check

if there’s a valid link

to another page

we can grab, and

tweak them for our

own use

76

07 Now we create a file to store the newly parsed document in for later

reading. We change any ‘/’ in the filename to ‘_’ so the script doesn’t

try and write to a random folder. We also do a quick check to see how many

links we’ve followed since the first page. If it’s the max level, we’ll add it to the

deepestAddresses list. We’ll use this a little bit later.

Writing to file

Work with Python Scrape Wikipedia with Beautiful Soup

06 By calling content.find_all(‘a’) we get a list of every <a> in the

document. We can iterate through this and check whether or not

there is a valid Wikipedia link in the <a>’s href. If the link is a valid link, we

quickly check how far down the link tree we are from the original page. If

we’ve reached the maximum depth we can go, we’ll store this page and call

it quits, otherwise we’ll start looking for links that we can grab within it. For

every page we request, we append its URL to the addresses list; to make sure

we don’t call the same page twice for each link we find, we check if we’ve

already stored it. If we have, then we’ll skip over the rest of the loop, but if

we’ve not then we’ll add it to the list of URLs that we’ve requested and fire off

a request. Once that check is done, We then do a quick string replace on that

link so that it points to the local directory, not to the subfolder /wiki/ that it’s

looking for.

Grabbing the links
Above Find the documentation for
Beautiful Soup at http://bit.ly/O2H8iD

77

08 After our script has iterated through every link on every page to the

maximum level of depth that it can, it will try to exit. On line 34 of the

code (on the disc and online) in the init function, we registered the function

cleanUp to execute on the program trying to exit; cleanUp’s job is to go through

the documents that we’ve downloaded and check that every link we’ve left in

the pages does in fact link to a file that we have available. If it can’t match the link

in the href to a file in the addresses list, it will remove it. Once we’re done, we will

have a fully portable chunk of Wikipedia we can take with us.

Tying up loose ends

Work with PythonScrape Wikipedia with Beautiful Soup

 doctype = “<!DOCTYPE html>”

 head = “<head><meta charset=\”UTF-8\” /><title>” + fileName + “</title></

head>”

 f = open(storeFolder + “/” + fileName.replace(‘/’, ‘_’) + “.html”, ‘w’)

 f.write(doctype + “<html lang=\”en\”>” + head + “<body><h1>” + fileName + “</

h1>” + str(content) + “</body></html>”)

 f.close()

def cleanUp():

 print(“\nRemoving links to pages that have not been saved\n”)

 for deepPage in deepestAddresses:

 rF = open(storeFolder + “/” + deepPage, ‘r’)

 deepSoup = BeautifulSoup(rF.read(), “html5lib”, from_encoding=”UTF-8”)

 for deepLinks in deepSoup.find_all(‘a’):

 link = deepLinks.get(“href”)

 pageStored = False

 for addr in addresses:

 if addr == link:

 pageStored = True

 if pageStored == False:

 if link is not None:

 if ‘#’ not in link:

 del deepLinks[‘href’]

 elif ‘#’ in link and len(link.split(‘#’)) > 1 or ‘:’ in link:

 del deepLinks[‘href’]

 wF = open(storeFolder + “/” + deepPage, ‘w’)

 wF.write(str(deepSoup))

 wF.close()

 print(“Complete”)

if __name__ == “__main__”:

 init()

06

07

08

6 Copy to file

After that, We take

the content we’ve

parsed and put it

into a brand new

HTML file

7 Clean up

Once every page

has been parsed

and stored, we’ll

go on through and

try to remove any

dead links

8 Initialise

This is how we will

initialise our script

Create with Python Have fun with programming

78

What could be more satisfying than playing a game that you have

programmed yourself? In this section we’re going to show you how to

do just that. We’ll get started with a simple game of tic-tac-toe, made

with the help of Kivy (p.80), before stepping things up a notch and

cloning the classic favourite, Pong (p.86). Then, it’s time to have a go at

making a Space Invaders-inspired game complete with retro graphics

(p.88). Coding games is one of the best ways to learn more Python,

plus you have something to play afterwards!

Create with Python
Use Python to get creative and program games

79

Create with PythonHave fun with programming

“Making a playable game is not
as difficult as you may think”

Create with Python Build tic-tac-toe with Kivy

80

Python
www.python.org/doc

What you’ll need… Build tic-tac-toe
with Kivy
Ease into the workings of Kivy by creating the pen-
and-paper classic in just over 100 lines of Python...

Kivy is a highly cross-platform graphical framework for Python, designed

for the creation of innovative user interfaces like multitouch apps. Its

applications can run not only on the traditional desktop platforms of

Linux, OS X and Windows, but also Android and iOS, plus devices like the

Raspberry Pi.

That means you can develop cross-platform apps using Python

libraries such as Requests, SQLAlchemy or even NumPy. You can even

access native mobile APIs straight from Python using some of Kivy’s

sister projects. Another great feature is the Cython-optimised OpenGL

graphics pipeline, allowing advanced GPU effects even though the basic

Python API is very simple.

Kivy is a set of Python/Cython modules that can easily be installed via

pip, but you’ll need a few dependencies. It uses Pygame as a rendering

backend (though its API is not exposed), Cython for compilation of the

speedy graphics compiler internals, and GStreamer for multimedia.

These should all be available through your distro’s repositories, or via pip

where applicable.

With these dependencies satisfied, you should be able install Kivy with

the normal pip incantation. The current version is 1.8.0, and the same

codebase supports both python2 and python3. The code in this tutorial

is also version-agnostic, running in python2.7 and python3.3.

pip install kivy

If you have any problems with pip, you can use easy_install via easy_

install kivy.

There are also packages or repositories available for several popular

distros. You can find more information on Kivy’s website. A kivy

application is started by instantiating and running an ‘App’ class. This is

what initialises our pp’s window, interfaces with the OS, and provides an

Create with PythonBuild tic-tac-toe with Kivy

81

entry point for the creation of our GUI. We can start

by making the simplest Kivy app possible:

from kivy.app import App

class TicTacToeApp(App):

 pass

if __name__ == “__main__”:

 TicTacToeApp().run()

You can already run this, your app will start up and

you’ll get a plain black window. Exciting!

We can build our own GUI out of Kivy widgets.

Each is a simple graphics element with some

specific behaviour of its own ranging from

standard GUI functionality (eg the Button, Label

or TextInput), to those that impose positioning on

their child widgets (eg the BoxLayout, FloatLayout

or GridLayout), to those abstracting a more

involved task like interacting with hardware (eg

the FileChooser, Camera or VideoPlayer). Most

importantly, Kivy’s widgets are designed to be easily

combined - rather than including a widget for every

need imaginable, widgets are kept simple but are

easy to join to invent new interfaces. We’ll see some

of that in this tutorial.

Since ‘Hello World!’ is basically compulsory in any

programming tutorial, let’s get it over with by using a

simple ‘Label’ widget to display the text:

from kivy.uix.label import Label

We’ll display the ‘Label’ by returning it as our app’s

root widget. Every app has a single root widget, the

top level of its widget tree, and it will automatically

be sized to fill the window. We’ll see later how to

construct a full GUI by adding more widgets for this

one, but for now it’s enough to set the root widget

by adding a new method to the ‘App’:

def build(self):

 return Label(text=’Hello World!’,

 font_size=100,

 color=0, 1, 0, 1)) # (r, g, b, a)

The ‘build’ method is called when the ‘App’ is run,

and whatever widget is returned automatically

becomes the root widget of that App’. In our case

that’s a Label, and we’ve set several properties - the

‘text’, ‘font_size’ and ‘color’. All widgets have different

properties controlling aspects of their behaviour,

which can be dynamically updated to alter their

appearance later, though here we set them just once

upon instantiation.

Note that these properties are not just Python

attributes but instead Kivy properties. These are

accessed like normal attributes but provide extra

functionality by hooking into Kivy’s event system.

We’ll see examples of creating properties shortly,

and you should do the same if you want to use your

variables with Kivy’s event or binding functionality.

That’s all you need to show some simple text, so

run the program again to check that this does work.

You can experiment with the parameters if it’s unclear

what any of them are doing.

Above The game with final additions, making the grid square and
extending the interface

82

Our own widget: tic-tac-toe
Since Kivy doesn’t have a tic-tac-toe widget, we’ll have

to make our own! It’s natural to create a new widget

class to contain this behaviour:

from kivy.uix.gridlayout import GridLayout

class TicTacToeGrid(GridLayout):

 pass

Now this obviously doesn’t do anything yet,

except that it inherits all the behaviour of the Kivy

GridLayout widget - that is, we’ll need to tell it how

many columns to have, but then it will automatically

arrange any child widgets to fit nicely with as many

rows as necessary. Tic-tac-toe requires three columns

and nine children.

Here we introduce the Kivy language (kv), a

special domain-specific language for making

rules describing Kivy widget trees. It’s very simple

but removes a lot of necessary boilerplate for

manipulating the GUI with Python code - as a loose

analogy you might think of it as the HTML/CSS to

Python’s JavaScript. Python gives us the dynamic

power to do anything, but all that power gets in the

way if we just want to declare the basic structure

of our GUI. Note that you never need kv language,

you can always do the same thing in Python alone,

but the rest of the example may show why Kivy

programmers usually like to use kv.

Kivy comes with all the tools needed to use kv

language; the simplest way is to write it in a file with

a name based on our App class. That is, we should

place the following in a file named ‘tictactoe.kv’:

<TicTacToeGrid>:

 cols: 3

This is the basic syntax of kv language; for each

widget type we may write a rule defining its

behaviour, including setting its properties and adding

child widgets. This example demonstrates the

former, creating a rule for the ‘TicTacToeGrid’ widget

by declaring that every ‘TicTacToeGrid’ instantiated

should have its ‘cols’ property set to 3.

We’ll use some more kv language features later, but

for now let’s go back to Python to create the buttons

that will be the entries in our tic-tac-toe grid.

from kivy.uix.button import Button

from kivy.properties import ListProperty

class GridEntry(Button):

 coords = ListProperty([0, 0])

This inherits from Kivy’s ‘Button’ widget, which

interacts with mouse or touch input, dispatching

events when interactions toggle it. We can hook

into these events to call our own functions when

a user presses the button, and can set the button’s

‘text’ property to display the ‘X’ or ‘O’. We also created

a new Kivy property for our widget, ‘coords’ – we’ll

show how this is useful later on. It’s almost identical

to making a normal Python attribute by writing ‘self.

coords = [0, 0]’ in ‘GridEntry.__init__’.

As with the ‘TicTacToeGrid’, we’ll style our new class

with kv language, but this time we get to see a more

interesting feature.

<GridEntry>:

 font_size: self.height

As before, this syntax defines a rule for how a

‘GridEntry’ widget should be constructed, this time

setting the ‘font_size’ property that controls the size

of the text in the button’s label. The extra magic is

that kv language automatically detects that we’ve

referenced the Button’s own height and will create

a binding to update this relationship – when a

‘GridEntry’ widget’s height changes, its ‘font_size’

will change so the text fits perfectly. We could have

Create with Python Build tic-tac-toe with Kivy

83

made these bindings straight from Python (another

usage of the ‘bind’ method used later on), but that’s

rarely as convenient as referencing the property we

want to bind to.

Let’s now populate our ‘TicTacToeGrid’ with

‘GridEntry’ widgets.

class TicTacToeGrid(GridLayout):

 def __init__(self, *args, **kwargs):

 super(TicTacToeGrid, self).__init__(*args,

**kwargs)

 for row in range(3):

 for column in range(3):

 grid_entry = GridEntry(

 coords=(row, column))

 grid_entry.bind(on_release=self.button_

pressed)

 self.add_widget(grid_entry)

 def button_pressed(self, instance):

 print(‘{} button clicked!’.format(instance.

coords))

This introduces a few new concepts: When we

instantiated our ‘GridEntry’ widgets, we were able to

set their ‘coords’ property by simply passing it in as

a kwarg. This is a minor feature that is automatically

handled by Kivy properties.

We used the ‘bind’ method to call the grid’s

‘button_pressed’ method whenever the G̀ridEntrỳ

widget dispatches an ‘on_release’ event. This is

automatically handled by its ‘Button’ superclass, and

will occur whenever a user presses, then releases a

‘GridEntry’ button. We could also bind to ‘on_press’,

which is dispatched when the button is first clicked,

or to any Kivy property of the button, dispatched

dynamically when the property is modified.

We added each ‘GridEntry’ widget to our ‘Grid’ via

the ‘add_widget’ method. That means each one

is a child widget of the ‘TicTacToeGrid’, and so it will

display them and knows it should automatically

arrange them into a grid with the number of

columns we set earlier.

Now all we have to do is replace our root widget

(returned from ‘App.build’) with a ‘TicTacToeGrid’ and

we can see what our app looks like.

def build(self):

 return TicTacToeGrid()

With this complete you can run your main Python file

again and enjoy your new program. All being well,

the single Label is replaced by a grid of nine buttons,

each of which you can click (it will automatically

change colour) and release (you’ll see the printed

output information from our binding).

We could customise the appearance by modifying

other properties of the Button, but for now we’ll leave

them as they are.

Has anyone won yet?
We’ll want to keep track of the state of the board to

check if anyone has won, which we can do with a

couple more Kivy properties:

from kivy.properties import (ListProperty,

NumericProperty)

class TicTacToeGrid(GridLayout):

 status = ListProperty([0, 0, 0, 0, 0, 0,

 0, 0, 0])

 current_player = NumericProperty(1)

This adds an internal status list representing who has

played where, and a number to represent the current

player (1 for ‘O’, -1 for ‘X’).

By placing these numbers in our status list, we’ll know

if somebody wins because the sum of a row, column or

diagonal will be +-3. Now we can update our graphical

grid when a move is played.

Create with PythonBuild tic-tac-toe with Kivy

84

def button_pressed(self, button):

 player = {1: ‘O’, -1: ‘X’}

 colours = {1: (1, 0, 0, 1), -1: (0, 1, 0,

 1)} # (r, g, b, a)

 row, column = button.coords

 status_index = 3*row + column

 already_played = self.status[status_index]

 if not already_played:

 self.status[status_index] = self.

 current_player

 button.text = {1: ‘O’, -1: ‘X’}[self.

 current_player]

 button.background_color = colours[self.

 current_player]

 self.current_player *= -1

You can run your app again to see exactly what this

did, and you’ll find that clicking each button now

places an ‘O’ or ‘X’ as well as a coloured background

depending on whose turn it is to play. Not only that,

but you can only play one move in each button

thanks to our status array that keeps track of the

existing moves.

This is enough to play the game but there’s one

vital element missing... a big pop-up telling you when

you’ve won! Before we can do that, we need to add

some code to check if the game is over.

Kivy properties have another useful feature

here, whenever they change they automatically

call an ‘on_propertyname’ method if it exists and

dispatch a corresponding event in Kivy’s event

system. That makes it very easy to write code that

will run when a property changes, both in Python

and kv language. In our case we can use it to

check the status list every time it is updated, doing

something special if a player has filled a column,

row or diagonal.

def on_status(self, instance, new_value):

 status = new_value

 sums = [sum(status[0:3]), # rows

 sum(status[3:6]),

 sum(status[6:9]),

 sum(status[0::3]), # columns

 sum(status[1::3]),

 sum(status[2::3]),

 sum(status[::4]), # diagonals

 sum(status[2:-2:2])]

 if 3 in sums:

 print(‘Os win!’)

 elif -3 in sums:

 print(‘Xs win!’)

 elif 0 not in self.status: # Grid full

 print(‘Draw!’)

This covers the basic detection of a won or drawn

board, but it only prints the result to stdout. At this

stage we probably want to reset the board so that

the players can try again, along with displaying a

graphical indicator of the result.

def reset(self, *args):

 self.status = [0 for _ in range(9)]

 for child in self.children:

 child.text = ‘’

 child.background_color = (1, 1, 1, 1)

 self.current_player = 1

Finally, we can modify the òn_status̀ method to

both reset the board and display the winner

in a ‘ModalView’ widget.

from kivy.uix.modalview import ModalView

Create with Python Build tic-tac-toe with Kivy

85

This is a pop-up widget that draws itself on top of

everything else rather than as part of the normal

widget tree. It also automatically closes when the user

clicks or taps outside it.

winner = None

if -3 in sums:

 winner = ‘Xs win!’

elif 3 in sums:

 winner = ‘Os win!’

elif 0 not in self.status:

 winner = ‘Draw...nobody wins!’

if winner:

 popup = ModalView(size_hint=0.75, 0.5))

 victory_label = Label(text=winner,

 font_size=50)

 popup.add_widget(victory_label)

 popup.bind(on_dismiss=self.reset)

 popup.open()

This mostly uses the same ideas we already covered,

adding the ‘Label’ widget to the ‘ModalView’ then

letting the ‘ModalView’ take care of drawing itself

and its children on top of everything else. We also

use another binding; this time to ‘on_dismiss’, which

is an event dispatched by the ‘ModalView’ when

it is closed. Finally, we made use of the ‘size_hint’

property common to all widgets, which in this case

is used to set the ‘ModalView’ size proportional to

the window – while a ‘ModalView’ is open you can

resize the window to see it dynamically resize, always

maintaining these proportions. This is another trick

made possible by a binding with the ‘size_hint’ Kivy

property, this time managed internally by Kivy.

That’s it, a finished program! We can now not only

play tic-tac-toe, but our program automatically tells

us when somebody has won, and resets the board

so we can play again. Simply run your program and

enjoy hours of fun!

Time to experiment
This has been a quick tour through some of Kivy’s

features, but hopefully it demonstrates how to think

about building a Kivy application. Our programs

are built from individual Kivy widgets, interacting

by having Python code run when their properties

change (eg our ‘on_status’ method) or when they

dispatch events (eg ‘Button’ ‘on_release’). We also

briefly saw kv language and experienced how it can

automatically create bindings between properties.

You can find a copy of the full program on FileSilo,

reference this to check you’ve followed everything

correctly. We’ve also added an extra widget, the

‘Interface’, with a structure coded entirely in kv

language that demonstrates how to add child

widgets. Test it by uncommenting the ‘return

Interface()’ line in ‘TicTacToeGrid.build’. It doesn’t

do anything fundamentally different to what we

already covered, but it does make extensive use of

kv language’s binding ability to automatically update

a label showing the current player, and to resize the

TicTacToeGrid so it is always square to fit within its

parent. You can play with the settings to see how it

fits together, or try swapping out the different widget

types to see how other widgets behave.

Above A tic-tac-toe grid now accepting input, adding in an O or X
alternately, each go

Create with PythonBuild tic-tac-toe with Kivy

Create with Python Make a Pong clone with Python

Latest Raspbian Image
www.raspberrypi.org/downloads

Pillow
https://github.com/python-imaging/Pillow

SimpleGUITk
https://github.com/dholm/simpleguitk/

Make a Pong
clone with
Python
We update the retro classic Pong for the Linux
generation with a new library called SimpleGUITk

The Raspberry Pi is a fantastic way to start learning how to code.

One area that can be very rewarding for amateur coders is game

programming, allowing for a more interactive result and a greater sense

of accomplishment. Game programming can also teach improvisation

and advanced mathematics skills for code. We’ll be using the fantastic

SimpleGUITk module in Python, a very straightforward way of creating

graphical interfaces based on Tkinter.

What you’ll need…

01 Head to the websites we’ve listed in ‘What you’ll need’ and download a zip of

the source files from the GitHub pages. Update your Raspbian packages and

then install the following:

 $ sudo apt-get install python-dev python-setuptools tk8.5-dev

tcl8.5-dev

Python module preparation

02 Open the terminal and use cd

to move to the extracted Pillow

folder. Once there, type:

 $ sudo python setup.py install

Once that’s complete, move to the

simpleguitk folder and use the same

command to install that as well.

Install the modules

03 Launch IDLE 2, rather than IDLE 3,

and open a new window. Use the

code listing to create our game ‘Tux for

Two’. Be careful to follow along with the

code to make sure you know what you’re

doing. This way, you can make your own

changes to the game rules if you wish.

Write your code

04 There’s nothing too groundbreaking to start the code: Tux’s and the paddles’

initial positions are set, along with the initial speed and direction of Tux. These

are also used when a point is won and the playing field is reset. The direction and

speed is set to random for each spawn.

Set up the game

05 The important parts in the

draw function are the draw_

line, draw_image and draw_text

functions. These are specifically from

SimpleGUI, and allow you to easily put

these objects on the screen with a

position, size and colour. You need to

tie them to an object, though – in this

case, canvas. This tells the software

that we want to put these items on

the screen for people to see.

The SimpleGUI code

06 The last parts are purely for

the interface. We tell the code

what to do when a key is depressed

and then released, and give it a frame

to work in. The frame is then told what

functions handle the graphics, key

functions etc. Finally, we give it frame.

start() so it starts.

SimpleGUI setup code

Below ‘Tux for Two’ is a great little
Pong clone using the beloved Linux
mascot, Tux, in the centre of the action

86

Create with Python

87

Make a Pong clone with Python

Full code listing

import simpleguitk as simplegui
import random

w, h = 600, 400
tux_r = 20
pad_w= 8
pad_h = 80

def tux_spawn(right):
 global tux_pos, tux_vel
 tux_pos = [0,0]
 tux_vel = [0,0]
 tux_pos[0] = w/2
 tux_pos[1] = h/2
 if right:
 tux_vel[0] = random.randrange(2, 4)
 else:
 tux_vel[0] = -random.randrange(2, 4)
 tux_vel[1] = -random.randrange(1, 3)

def start():
 global paddle1_pos, paddle2_pos,
paddle1_vel, paddle2_vel
 global score1, score2
 tux_spawn(random.choice([True, False]))
 score1, score2 = 0,0
 paddle1_vel, paddle2_vel = 0,0
 paddle1_pos, paddle2_pos = h/2, h/2

def draw(canvas):
 global score1, score2, paddle1_pos,
paddle2_pos, tux_pos, tux_vel
 if paddle1_pos > (h - (pad_h/2)):
 paddle1_pos = (h - (pad_h/2))
 elif paddle1_pos < (pad_h/2):
 paddle1_pos = (pad_h/2)
 else:
 paddle1_pos += paddle1_vel
 if paddle2_pos > (h - (pad_h/2)):
 paddle2_pos = (h - (pad_h/2))
 elif paddle2_pos < (pad_h/2):
 paddle2_pos = (pad_h/2)
 else:
 paddle2_pos += paddle2_vel
 canvas.draw_line([w / 2, 0],[w / 2, h], 4,
“Green”)
 canvas.draw_line([(pad_w/2), paddle1_
pos + (pad_h/2)], [(pad_w/2), paddle1_pos -
(pad_h/2)], pad_w, “Green”)
 canvas.draw_line([w - (pad_w/2),
paddle2_pos + (pad_h/2)], [w - (pad_w/2),
paddle2_pos - (pad_h/2)], pad_w, “Green”)
 tux_pos[0] += tux_vel[0]
 tux_pos[1] += tux_vel[1]
 if tux_pos[1] <= tux_r or tux_pos[1] >=
h - tux_r:
 tux_vel[1] = -tux_vel[1]*1.1

 if tux_pos[0] <= pad_w + tux_r:
 if (paddle1_pos+(pad_h/2)) >=
tux_pos[1] >= (paddle1_pos-(pad_h/2)):
 tux_vel[0] = -tux_vel[0]*1.1
 tux_vel[1] *= 1.1
 else:
 score2 += 1
 tux_spawn(True)
 elif tux_pos[0] >= w - pad_w - tux_r:
 if (paddle2_pos+(pad_h/2)) >=
tux_pos[1] >= (paddle2_pos-(pad_h/2)):
 tux_vel[0] = -tux_vel[0]
 tux_vel[1] *= 1.1
 else:
 score1 += 1
 tux_spawn(False)
 canvas.draw_image(tux, (265 / 2, 314 / 2),
(265, 314), tux_pos, (45, 45))
 canvas.draw_text(str(score1), [150, 100],
30, “Green”)
 canvas.draw_text(str(score2), [450, 100],
30, “Green”)

def keydown(key):
 global paddle1_vel, paddle2_vel
 acc = 3
 if key == simplegui.KEY_MAP[“w”]:
 paddle1_vel -= acc
 elif key == simplegui.KEY_MAP[“s”]:
 paddle1_vel += acc
 elif key==simplegui.KEY_MAP[“down”]:
 paddle2_vel += acc
 elif key==simplegui.KEY_MAP[“up”]:
 paddle2_vel -= acc

def keyup(key):
 global paddle1_vel, paddle2_vel
 acc = 0
 if key == simplegui.KEY_MAP[“w”]:
 paddle1_vel = acc
 elif key == simplegui.KEY_MAP[“s”]:
 paddle1_vel = acc
 elif key==simplegui.KEY_MAP[“down”]:
 paddle2_vel = acc
 elif key==simplegui.KEY_MAP[“up”]:
 paddle2_vel = acc

frame = simplegui.create_frame(“Tux for Two”,
w, h)
frame.set_draw_handler(draw)
frame.set_keydown_handler(keydown)
frame.set_keyup_handler(keyup)
tux = simplegui.load_image(‘http://upload.
wikimedia.org/wikipedia/commons/a/af/Tux.png’)

start()
frame.start()

Create with Python Program a Space Invaders clone

88

Raspbian
www.raspberrypi.org/downloads

Python
www.python.org/doc

Pygame
www.pygame.org/docs

What you’ll need…

Right Pivaders is
a Space Invaders
clone we’ve made
especially for the Pi

Did you know…

Space Invaders was one of the
biggest arcade hits in the world.
It’s a great first game since
everyone knows how to play!

Program a Space
Invaders clone
Write your own RasPi shooter in 300 lines of Python

When you’re learning to program in a new language or trying to master

a new module, experimenting with a familiar and relatively simply

project is a very useful exercise to help expand your understanding of

the tools you’re using. Our Space Invaders clone is one such example

that lends itself perfectly to Python and the Pygame module – it’s a

simple game with almost universally understood rules and logic.

We’ve tried to use many features of Pygame, which is designed to

make the creation of games and interactive applications easier. We’ve

extensively used the Sprite class, which saves dozens of lines of extra

code in making collision detection simple and updating the screen and

its many actors a single-line command.

Have fun with the project and make sure you tweak and change

things to make it your own!

Create with PythonProgram a Space Invaders clone

89

Full code listing

#!/usr/bin/env python2

import pygame, random

BLACK = (0, 0, 0)
BLUE = (0, 0, 255)
WHITE = (255, 255, 255)
RED = (255, 0, 0)
ALIEN_SIZE = (30, 40)
ALIEN_SPACER = 20
BARRIER_ROW = 10
BARRIER_COLUMN = 4
BULLET_SIZE = (5, 10)
MISSILE_SIZE = (5, 5)
BLOCK_SIZE = (10, 10)
RES = (800, 600)

class Player(pygame.sprite.Sprite):
 def __init__(self):
 pygame.sprite.Sprite.__init__(self)
 self.size = (60, 55)
 self.rect = self.image.get_rect()
 self.rect.x = (RES[0] / 2) - (self.size
[0] / 2)
 self.rect.y = 520
 self.travel = 7
 self.speed = 350
 self.time = pygame.time.get_ticks()

 def update(self):
 self.rect.x += GameState.vector * self.
travel
 if self.rect.x < 0:
 self.rect.x = 0
 elif self.rect.x > RES[0] - self.size[0]:
 self.rect.x = RES[0] - self.size[0]

class Alien(pygame.sprite.Sprite):
 def __init__(self):
 pygame.sprite.Sprite.__init__(self)
 self.size = (ALIEN_SIZE)
 self.rect = self.image.get_rect()
 self.has_moved = [0, 0]
 self.vector = [1, 1]
 self.travel = [(ALIEN_SIZE[0] - 7),
ALIEN_SPACER]
 self.speed = 700
 self.time = pygame.time.get_ticks()

 def update(self):
 if GameState.alien_time - self.time >
self.speed:
 if self.has_moved[0] < 12:
 self.rect.x += self.vector[0] * self.
travel[0]
 self.has_moved[0] +=1
 else:

 if not self.has_moved[1]:
 self.rect.y += self.vector[1] *
self.travel[1]
 self.vector[0] *= -1
 self.has_moved = [0, 0]
 self.speed -= 20
 if self.speed <= 100:
 self.speed = 100
 self.time = GameState.alien_time

class Ammo(pygame.sprite.Sprite):
 def __init__(self, color, (width, height)):
 pygame.sprite.Sprite.__init__(self)
 self.image = pygame.Surface([width,
height])
 self.image.fill(color)
 self.rect = self.image.get_rect()
 self.speed = 0
 self.vector = 0

 def update(self):
 self.rect.y += self.vector * self.speed
 if self.rect.y < 0 or self.rect.y > RES[1]:
 self.kill()

class Block(pygame.sprite.Sprite):
 def __init__(self, color, (width, height)):
 pygame.sprite.Sprite.__init__(self)
 self.image = pygame.Surface([width,
height])
 self.image.fill(color)
 self.rect = self.image.get_rect()
class GameState:
 pass

class Game(object):
 def __init__(self):
 pygame.init()
 pygame.font.init()
 self.clock = pygame.time.Clock()
 self.game_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 28)
 self.intro_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 72)
 self.screen = pygame.display.set_
mode([RES[0], RES[1]])
 self.time = pygame.time.get_ticks()
 self.refresh_rate = 20
 self.rounds_won = 0
 self.level_up = 50
 self.score = 0
 self.lives = 2
 self.player_group = pygame.sprite.Group()
 self.alien_group = pygame.sprite.Group()
 self.bullet_group = pygame.sprite.Group()
 self.missile_group = pygame.sprite.Group()
 self.barrier_group = pygame.sprite.Group()

Continued on page 91

Create with Python

90

“We’ve tried to use many features of
Pygame, which is designed to make
the creation of games and interactive
applications easier”

03 With Pygame installed and the project cloned to your machine (you can also

find the .zip on this issue’s cover DVD – simply unpack it and copy it to your

home directory to use it), you can take it for a quick test drive to make sure everything’s

set up properly. All you need to do is type python pivaders.py from within the

pivaders directory in the terminal to get started. You can start the game with the

space bar, shoot with the same button and simply use the left and right arrows on

your keyboard to move your ship left and right.

Testing Pivaders

05 Once we’ve imported the

modules we need for the

project, there’s quite a long list

of variables in block capitals. The

capitals denote that these variables

are constants (or global variables).

These are important numbers that

never change – they represent

things referred to regularly in the

code, like colours, block sizes and

resolution. You’ll also notice that

colours and sizes hold multiple

numbers in braces – these are tuples.

You could use square brackets (to

make them lists), but we use tuples

here since they’re immutable, which

means you can’t reassign individual

items within them. Perfect for

constants, which aren’t designed to

change anyway.

Global variables & tuples

06 A class is essentially a

blueprint for an object you’d

like to make. In the case of our player,

it contains all the required info, from

which you can make multiple copies

(we create a player instance in the

make_player() method halfway

through the project). The great thing

about the classes in Pivaders is that

they inherit lots of capabilities and

shortcuts from Pygame’s Sprite class,

as denoted by the pygame.sprite.

Sprite found within the braces of the

first line of the class. You can read

the docs to learn more about the

Sprite class via

www.pygame.org/docs/ref/sprite.html.

Classes – part 1

04 Once you’ve racked up a good high score (anything over 2,000 points is

respectable) and got to know our simple implementation, you’ll get more

from following along with and exploring the code and our brief explanations of

what’s going on. For those who want to make their own project, create a new

project folder and use either IDLE or Leafpad (or perhaps install Geany) to create

and save a .py file of your own.

Creating your own clone

02 For Pivaders we’ve used Git, a brilliant form of version control used to

safely store the game files and retain historical versions of your code. Git

should already be installed on your Pi; if not, you can acquire it by typing:

 sudo apt-get install git

As well as acting as caretaker for your code, Git enables you to clone copies

of other people’s projects so you can work on them, or just use them. To clone

Pivaders, go to your home folder in the terminal (cd ~), make a directory for the

project (mkdir pivaders), enter the directory (cd pivaders) and type:

 git pull https://github.com/russb78/pivaders.git

Installation

01 If you’re looking to get a better understanding of programming games with

Python and Pygame, we strongly recommend you copy the Pivaders code

in this tutorial into your own program. It’s great practice and gives you a chance

to tweak elements of the game to suit you, be it a different ship image, changing

the difficulty or the ways the alien waves behave. If you just want to play the game,

that’s easily achieved too, though. Either way, the game’s only dependency is

Pygame, which (if it isn’t already) can be installed from the terminal by typing:

 sudo apt-get install python-pygame

Setting up dependencies

Program a Space Invaders clone

Create with Python

91

 self.all_sprite_list = pygame.sprite.
Group()
 self.intro_screen = pygame.image.load(
 ‘data/start_screen.jpg’).convert()
 self.background = pygame.image.load(
 ‘data/Space-Background.jpg’).convert()
 pygame.display.set_caption(‘Pivaders -
ESC to exit’)
 pygame.mouse.set_visible(False)
 Player.image = pygame.image.load(
 ‘data/ship.png’).convert()
 Player.image.set_colorkey(BLACK)
 Alien.image = pygame.image.load(
 ‘data/Spaceship16.png’).convert()
 Alien.image.set_colorkey(WHITE)
 GameState.end_game = False
 GameState.start_screen = True
 GameState.vector = 0
 GameState.shoot_bullet = False

 def control(self):
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 GameState.start_screen = False
 GameState.end_game = True
 if event.type == pygame.KEYDOWN \
 and event.key == pygame.K_ESCAPE:
 if GameState.start_screen:
 GameState.start_screen = False
 GameState.end_game = True
 self.kill_all()
 else:
 GameState.start_screen = True
 self.keys = pygame.key.get_pressed()
 if self.keys[pygame.K_LEFT]:
 GameState.vector = -1
 elif self.keys[pygame.K_RIGHT]:
 GameState.vector = 1
 else:
 GameState.vector = 0
 if self.keys[pygame.K_SPACE]:
 if GameState.start_screen:
 GameState.start_screen = False
 self.lives = 2
 self.score = 0
 self.make_player()
 self.make_defenses()
 self.alien_wave(0)
 else:
 GameState.shoot_bullet = True

 def splash_screen(self):
 while GameState.start_screen:
 self.kill_all()
 self.screen.blit(self.intro_screen,
[0, 0])
 self.screen.blit(self.intro_font.render(
 “PIVADERS”, 1, WHITE), (265, 120))

 self.screen.blit(self.game_font.render(
 “PRESS SPACE TO PLAY”, 1, WHITE),
(274, 191))
 pygame.display.flip()
 self.control()

 def make_player(self):
 self.player = Player()
 self.player_group.add(self.player)
 self.all_sprite_list.add(self.player)

 def refresh_screen(self):
 self.all_sprite_list.draw(self.screen)
 self.refresh_scores()
 pygame.display.flip()
 self.screen.blit(self.background, [0, 0])
 self.clock.tick(self.refresh_rate)

 def refresh_scores(self):
 self.screen.blit(self.game_font.render(
 “SCORE “ + str(self.score), 1, WHITE),
(10, 8))
 self.screen.blit(self.game_font.render(
 “LIVES “ + str(self.lives + 1), 1, RED),
(355, 575))

 def alien_wave(self, speed):
 for column in range(BARRIER_COLUMN):
 for row in range(BARRIER_ROW):
 alien = Alien()
 alien.rect.y = 65 + (column * (
 ALIEN_SIZE[1] + ALIEN_SPACER))
 alien.rect.x = ALIEN_SPACER + (
 row * (ALIEN_SIZE[0] + ALIEN_SPACER))
 self.alien_group.add(alien)
 self.all_sprite_list.add(alien)
 alien.speed -= speed

 def make_bullet(self):
 if GameState.game_time - self.player.
time > self.player.speed:
 bullet = Ammo(BLUE, BULLET_SIZE)
 bullet.vector = -1
 bullet.speed = 26
 bullet.rect.x = self.player.rect.x + 28
 bullet.rect.y = self.player.rect.y
 self.bullet_group.add(bullet)
 self.all_sprite_list.add(bullet)
 self.player.time = GameState.game_time
 GameState.shoot_bullet = False

 def make_missile(self):
 if len(self.alien_group):
 shoot = random.random()
 if shoot <= 0.05:
 shooter = random.choice([
 alien for alien in self.alien_group])
 missile = Ammo(RED, MISSILE_SIZE)

Program a Space Invaders clone

Continued from page 89

Continued on page 93

Create with Python

92

08 What’s most interesting about classes, though, is that you can use one class

to create lots of different things. You could, for example, have a pet class.

From that class you could create a cat (that meows) and a dog (that barks). They’re

different in many ways, but they’re both furry and have four legs, so can be created

from the same parent class. We’ve done exactly that with our Ammo class, using it to

create both the player bullets and the alien missiles. They’re different colours and they

shoot in opposite directions, but they’re fundamentally one and the same.

Ammo

10 There are a lot of methods (class functions) in the Game class, and each is

designed to control a particular aspect of either setting up the game or

the gameplay itself. The logic that dictates what happens within any one round

of the game is contained in the main_loop() method right at the bottom of the

pivaders.py script and is the key to unlocking exactly what variables and functions

you need for your game.

The main loop

11 Firstly the game checks that

the end_game attribute is

false – if it’s true, the entire loop in

main_loop() is skipped and we go

straight to pygame.quit(), exiting the

game. This flag is set to true only if

the player closes the game window

or presses the Esc key when on the

start_screen. Assuming end_game

and start_screen are false, the main

loop can start proper, with the

control() method, which checks to see

if the location of the player needs to

change. Next we attempt to make an

enemy missile and we use the random

module to limit the number of missiles

that can be created. Next we call the

update() method for each and every

actor on the screen using a simple for

loop. This makes sure everyone’s up

to date and moved before we check

collisions in calc_collisions().

Main loop key
logic – part 1

12 Once collisions have been

calculated, we need to

see if the game is still meant to

continue. We do so with is_dead()

and defenses_breached() – if either

of these methods returns true, we

know we need to return to the start

screen. On the other hand, we also

need to check to see if we’ve killed all

the aliens, from within win_round().

Assuming we’re not dead, but the

aliens are, we know we can call the

next_round() method, which creates

a fresh batch of aliens and increases

their speed around the screen. Finally,

we refresh the screen so everything

that’s been moved, shot or killed can

be updated or removed from the

screen. Remember, the main loop

happens 20 times a second – so the

fact we don’t call for the screen to

update right at the end of the loop is

of no consequence.

Main loop key
logic – part 2

09 Our final class is called Game. This is where all the main functionality of

the game itself comes in, but remember, so far this is still just a list of

ingredients – nothing can actually happen until a ‘Game’ object is created (right

at the bottom of the code). The Game class is where the central mass of the

game resides, so we initialise Pygame, set the imagery for our protagonist and

extraterrestrial antagonist and create some GameState attributes that we use to

control key aspects of external classes, like changing the player’s vector (direction).

The game

07 In Pivader’s classes, besides creating the required attributes for the object,

you’ll also notice all the classes have an update() method apart from the

Block class (a method is a function within a class). The update() method is called

in every loop through the main game and simply asks the iteration of the class

we’ve created to move. In the case of a bullet from the Ammo class, we’re asking it

to move down the screen. If it goes off either end, we destroy it.

Classes – part 2

Program a Space Invaders clone

Create with Python

93

 missile.vector = 1
 missile.rect.x = shooter.rect.x + 15
 missile.rect.y = shooter.rect.y + 40
 missile.speed = 10
 self.missile_group.add(missile)
 self.all_sprite_list.add(missile)

 def make_barrier(self, columns, rows, spacer):
 for column in range(columns):
 for row in range(rows):
 barrier = Block(WHITE, (BLOCK_SIZE))
 barrier.rect.x = 55 + (200 * spacer)
+ (row * 10)
 barrier.rect.y = 450 + (column * 10)
 self.barrier_group.add(barrier)
 self.all_sprite_list.add(barrier)

 def make_defenses(self):
 for spacing, spacing in
enumerate(xrange(4)):
 self.make_barrier(3, 9, spacing)

 def kill_all(self):
 for items in [self.bullet_group, self.
player_group,
 self.alien_group, self.missile_group,
self.barrier_group]:
 for i in items:
 i.kill()

 def is_dead(self):
 if self.lives < 0:
 self.screen.blit(self.game_font.render(
 “The war is lost! You scored: “ + str(
 self.score), 1, RED), (250, 15))
 self.rounds_won = 0
 self.refresh_screen()
 pygame.time.delay(3000)
 return True

 def win_round(self):
 if len(self.alien_group) < 1:
 self.rounds_won += 1
 self.screen.blit(self.game_font.render(
 “You won round “ + str(self.rounds_won) +
 “ but the battle rages on”, 1, RED),
(200, 15))
 self.refresh_screen()
 pygame.time.delay(3000)
 return True

 def defenses_breached(self):
 for alien in self.alien_group:
 if alien.rect.y > 410:
 self.screen.blit(self.game_font.render(
 “The aliens have breached Earth
defenses!”,
 1, RED), (180, 15))

 self.refresh_screen()
 pygame.time.delay(3000)
 return True

 def calc_collisions(self):
 pygame.sprite.groupcollide(
 self.missile_group, self.barrier_group,
True, True)
 pygame.sprite.groupcollide(
 self.bullet_group, self.barrier_group,
True, True)
 if pygame.sprite.groupcollide(
 self.bullet_group, self.alien_group,
True, True):
 self.score += 10
 if pygame.sprite.groupcollide(
 self.player_group, self.missile_group,
False, True):
 self.lives -= 1

 def next_round(self):
 for actor in [self.missile_group,
 self.barrier_group, self.bullet_group]:
 for i in actor:
 i.kill()
 self.alien_wave(self.level_up)
 self.make_defenses()
 self.level_up += 50

 def main_loop(self):
 while not GameState.end_game:
 while not GameState.start_screen:
 GameState.game_time = pygame.time.
get_ticks()
 GameState.alien_time = pygame.time.
get_ticks()
 self.control()
 self.make_missile()
 for actor in [self.player_group,
self.bullet_group,
 self.alien_group, self.missile_group]:
 for i in actor:
 i.update()
 if GameState.shoot_bullet:
 self.make_bullet()
 self.calc_collisions()
 if self.is_dead() or self.defenses_
breached():
 GameState.start_screen = True
 if self.win_round():
 self.next_round()
 self.refresh_screen()
 self.splash_screen()
 pygame.quit()

if __name__ == ‘__main__’:
 pv = Game()
 pv.main_loop()

Program a Space Invaders clone

Continued from page 91

Create with Python Pivaders part 2: graphics and sound

94

Raspbian
www.raspberrypi.org/downloads

Python
www.python.org/doc

Pygame
www.pygame.org/docs

Art assets
opengameart.org

Pivaders Pt 2:
graphics & sound

We had great fun creating our basic Space Invaders clone, Pivaders,

in the previous guide. Pygame’s ability to group, manage and detect

collisions thanks to the Sprite class really made a great difference to

our project, not just in terms of code length, but in simplicity too. If

you missed the first part of the project, you can find the v0.1 code

listing on GitHub via git.io/cBVTBg, while you can find version v0.2

of the code, including all the images, music and sound effects we’ve

used at git.io/8QsK-w.

To help keep our project code manageable and straightforward

(as your projects grow keeping your code easy to follow becomes

increasingly harder) we integrated a few animation methods into

our Game class and opted to use a sprite sheet. Not only does it

make it very easy to draw to the screen, but it also keeps the asset

count under control and keeps performance levels up, which is

especially important for the Raspberry Pi. We hope you have fun

using our techniques to add animation and sound to your projects!

What you’ll need…

01 You’ll get much more from

the exercise if you download

the code (git.io/8QsK-w) and use

it for reference as you create your

own animations and sound effects.

Regardless of whether you just want

to simply preview and play or walk-

through the code to get a better

understanding of basic game creation,

you’re still going to need to satisfy

some basic dependencies. The two

key requirements here are Pygame

and Git, both of which are installed

by default on up-to-date Raspbian

installations. That’s easy!

Setting up dependencies

Did you know…

Space Invaders is one of
the most cloned games in the
world! It makes a great first
project for game programmers.

02 Git is a superb version

control solution that helps

programmers safely store their code

and associated files. Not only does

it help you retain a full history of

changes, it means you can ‘clone’

entire projects to use and work on

from places like github.com. To clone

the version of the project we created

for this tutorial, go to your home

folder from the command line (cd ~)

and type:

 git pull https://github.com/
russb78/pivaders.git

This creates a folder called pivaders.

Downloading pivaders Navigating the project

03 Within pivaders sits a licence,

readme and a second pivaders

folder. This contains the main game

file, pivaders.py, which launches the

application. Within the data folder

you’ll find subfolders for both graphics

and sound assets, as well as the font

we’ve used for the title screen and

scores. To take pivaders for a test-drive,

simply enter the pivaders subdirectory

(cd pivaders/pivaders) and type:

 python pivaders.py
Use the arrow keys to steer left and

right and the space bar to shoot. You

can quit with the Escape key.

This time we’ll expand our Space Invaders clone to
include immersive animation and sound

Create with PythonPivaders part 2: graphics and sound

95

class Game(object):
 def __init__(self):
 pygame.init()
 pygame.font.init()
 self.clock = pygame.time.Clock()
 self.game_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 28)
 self.intro_font = pygame.font.Font(
 ‘data/Orbitracer.ttf’, 72)
 self.screen = pygame.display.set_mode([RES[0], RES[1]])
 self.time = pygame.time.get_ticks()
 self.refresh_rate = 20; self.rounds_won = 0
 self.level_up = 50; self.score = 0
 self.lives = 2
 self.player_group = pygame.sprite.Group()
 self.alien_group = pygame.sprite.Group()
 self.bullet_group = pygame.sprite.Group()
 self.missile_group = pygame.sprite.Group()
 self.barrier_group = pygame.sprite.Group()
 self.all_sprite_list = pygame.sprite.Group()
 self.intro_screen = pygame.image.load(
 ‘data/graphics/start_screen.jpg’).convert()
 self.background = pygame.image.load(
 ‘data/graphics/Space-Background.jpg’).convert()
 pygame.display.set_caption(‘Pivaders - ESC to exit’)
 pygame.mouse.set_visible(False)
 Alien.image = pygame.image.load(
 ‘data/graphics/Spaceship16.png’).convert()
 Alien.image.set_colorkey(WHITE)
 self.ani_pos = 5 # 11 images of ship
 self.ship_sheet = pygame.image.load(
 ‘data/graphics/ship_sheet_final.png’).convert_alpha()
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 self.animate_right = False
 self.animate_left = False
 self.explosion_sheet = pygame.image.load(
 ‘data/graphics/explosion_new1.png’).convert_alpha()
 self.explosion_image = self.explosion_sheet.subsurface(
0, 0, 79, 96)
 self.alien_explosion_sheet = pygame.image.load(
 ‘data/graphics/alien_explosion.png’)
 self.alien_explode_graphics = self.alien_explosion_sheet.
subsurface(0, 0, 94, 96)
 self.explode = False
 self.explode_pos = 0; self.alien_explode = False
 self.alien_explode_pos = 0
 pygame.mixer.music.load(‘data/sound/10_Arpanauts.ogg’)
 pygame.mixer.music.play(-1)
 pygame.mixer.music.set_volume(0.7)
 self.bullet_fx = pygame.mixer.Sound(
 ‘data/sound/medetix__pc-bitcrushed-lazer-beam.ogg’)
 self.explosion_fx = pygame.mixer.Sound(
 ‘data/sound/timgormly__8-bit-explosion.ogg’)
 self.explosion_fx.set_volume(0.5)
 self.explodey_alien = []

Code listing (starting from line 87) Animation & sound

05 Before we can program

anything, it’s wise to have

assets set up correctly. We’ve opted to

use sprite sheets; these can be found

online or created with GIMP with a

little practice. They’re a mosaic made

up of individual ‘frames’ of equally

sized and spaced images representing

each frame. We found ours at

opengameart.org.

Finding images to animate

06 While many of the assets you’ll

find online can be used as is,

you may want to import them into an

image-editing application like GIMP to

configure them to suit your needs. We

started with the central ship sprite and

centred it into a new window. We set

the size and width of the frame and

then copy-pasted the other frames

either side of it. We ended up with 11

frames of exactly the same size and

width in a single document. Pixel-

perfect precision on size and width is

key, so we can just multiply it to find

the next frame.

Tweaking assets

04 Compared with the game from

last month’s tutorial, you’ll see

it’s now a much more dynamic project.

The ship now leans into the turns as

you change direction and corrects

itself when stationary. When you shoot

an alien ship, it explodes with several

frames of animation and should you

take fire, a smaller explosion occurs on

your ship. Music, lasers and explosion

sound effects also accompany the

animations as they happen.

Continued on page 96

Create with Python Pivaders part 2: graphics and sound

96

 GameState.end_game = False
 GameState.start_screen = True
 GameState.vector = 0
 GameState.shoot_bullet = False

 def control(self):
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 GameState.start_screen = False
 GameState.end_game = True
 if event.type == pygame.KEYDOWN \
 and event.key == pygame.K_ESCAPE:
 if GameState.start_screen:
 GameState.start_screen = False
 GameState.end_game = True
 self.kill_all()
 else:
 GameState.start_screen = True
 self.keys = pygame.key.get_pressed()
 if self.keys[pygame.K_LEFT]:
 GameState.vector = -1
 self.animate_left = True
 self.animate_right = False
 elif self.keys[pygame.K_RIGHT]:
 GameState.vector = 1
 self.animate_right = True
 self.animate_left = False
 else:
 GameState.vector = 0
 self.animate_right = False
 self.animate_left = False

 if self.keys[pygame.K_SPACE]:
 if GameState.start_screen:
 GameState.start_screen = False
 self.lives = 2
 self.score = 0
 self.make_player()
 self.make_defenses()
 self.alien_wave(0)
 else:
 GameState.shoot_bullet = True
 self.bullet_fx.play()

 def animate_player(self):
 if self.animate_right:
 if self.ani_pos < 10:
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 self.ani_pos += 1
 else:
 if self.ani_pos > 5:
 self.ani_pos -= 1
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)

 if self.animate_left:
 if self.ani_pos > 0:
 self.ani_pos -= 1

08 Slightly further down the list

in the initialising code for the

Game class, we also set two flags for

our player animation: self.animate_left

and self.animate_right. As you’ll see in

the Control method of our Game class,

we use these to ‘flag’ when we want

animations to happen with True and

False. It also allows us to ‘automatically’

animate the player sprite back to its

natural resting state (otherwise the

ship will continue to look as if it’s flying

left when it has stopped).

Animation flags

07 Since we’re inheriting from

the Sprite class to create our

Player class, we can easily alter how the

player looks on screen by changing

Player.image. First, we need to load our

ship sprite sheet with pygame.image.

load(). Since we made our sheet with

a transparent background, we can

append .convert_alpha() to the end

of the line so the ship frames render

correctly (without any background). We

then use subsurface to set the initial

Player.image to the middle ship sprite

on the sheet. This is set by self.ani_pos,

which has an initial value of 5. Changing

this value will alter the ship image

drawn to the screen: ‘0’ would draw it

leaning fully left, ‘11’ fully to the right.

Loading the sprite sheet

09 We use flags again in the code

for the player: animate_player().

Here we use nested if statements to

control the animation and physically

set the player image. It states that if the

animate_right flag is True and if the

current animation position is different

to what we want, we incrementally

increase the ani_pos variable and set

the player’s image. The Else statement

then animates the ship sprite back to

its resting state and the same logic is

then applied in the opposite direction.

The animation method

Create with PythonPivaders part 2: graphics and sound

97

 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 else:
 if self.ani_pos < 5:
 Player.image = self.ship_sheet.subsurface(
 self.ani_pos*64, 0, 64, 61)
 self.ani_pos += 1

 def player_explosion(self):
 if self.explode:
 if self.explode_pos < 8:
 self.explosion_image = self.explosion_sheet.
subsurface(0, self.explode_pos*96, 79, 96)
 self.explode_pos += 1
 self.screen.blit(self.explosion_image, [self.player.
rect.x -10, self.player.rect.y - 30])

 else:
 self.explode = False
 self.explode_pos = 0

 def alien_explosion(self):
 if self.alien_explode:
 if self.alien_explode_pos < 9:
 self.alien_explode_graphics = self.alien_
explosion_ sheet.subsurface(0, self.alien_explode_pos*96, 94,
96)
 self.alien_explode_pos += 1
 self.screen.blit(self.alien_explode_graphics,
[int(self. explodey_alien[0]) - 50 , int(self.explodey_alien[1]) -
60])
 else:
 self.alien_explode = False
 self.alien_explode_pos = 0
 self.explodey_alien = []

 def splash_screen(self):
 while GameState.start_screen:
 self.kill_all()
 self.screen.blit(self.intro_screen, [0, 0])
 self.screen.blit(self.intro_font.render(
 “PIVADERS”, 1, WHITE), (265, 120))
 self.screen.blit(self.game_font.render(
 “PRESS SPACE TO PLAY”, 1, WHITE), (274, 191))
 pygame.display.flip()
 self.control()
 self.clock.tick(self.refresh_rate / 2)

 def make_player(self):
 self.player = Player()

Find the rest of the code at github.com/russb78/pivaders

10 The player_explosion() and

alien_explosion() methods

that come after the player animation

block in the Game class are similar but

simpler executions of the same thing.

As we only need to run through the

same predefined set of frames (this

time vertically), we only need to see if

the self.explode and self.alien_explode

flags are True before we increment the

variables that change the image.

Animating explosions

11 Pygame makes it easy to add a

musical score to a project. Just

obtain a suitable piece of music in

your preferred format (we found ours

via freemusicarchive.org) and load it

using the Mixer Pygame class. As it’s

already been initialised via pygame.

init(), we can go ahead and load the

music. The music.play(-1) requests

that the music should start with the

app and continue to loop until it quits.

If we replaced -1 with 5, the music

would loop five times before ending.

Learn more about the Mixer class via

www.pygame.org/docs/ref/

mixer.html.

Adding music

12 Loading and using sounds

is similar to how we do so

for images in Pygame. First we load

the sound effect using a simple

assignment. For the laser beam, the

initialisation looks like this:

 self.bullet_fx = pygame.
mixer.Sound(‘location/of/file’)

Then we simply trigger the sound

effect at the appropriate time. In the

case of the laser, we want it to play

whenever we press the space bar

to shoot, so we place it in the Game

class’s Control method, straight

after we raise the shoot_bullet

flag. You can get different sounds

from www.freesound.org.

Using sound effects

“Sprite sheets make it easy to draw to the
screen, but it also keeps the asset count
down and performance levels up”

98

Use Python with Pi Create amazing projects

Use Python with Pi
Amazing creations with Python code and Raspberry Pi

From the tutorials up to this point, you’ll have a firm grounding in Python.

Now we’re going to add the Raspberry Pi computer. First you’ll learn how

to get started with Python on the Pi, and then you’ll discover exciting

projects such as learning to multi-task with your Raspberry Pi (p.110),

creating a Pi-powered virtual reality setup (p.114) and using it to get more

out of Minecraft (p.106).

99

Use Python with PiCreate amazing projects

Use Python with Pi Using Python on Raspberry Pi

100

A Raspberry Pi with all
necessary peripherals

SD card with
latest Debian image for Pi
www.raspberrypi.org/downloads

What you’ll need… Using Python
on Raspberry Pi
Program in Python with the Raspberry Pi, and lay
the foundations for all your future projects

Before getting started with this tutorial, ensure that you’ve set up the

latest version of the Raspbian operating system on an SD card for your

Raspberry Pi. The beauty of using an SD card image is that the operating

system is ready to go and a development environment is already

configured for us.

We’ll use a lightweight integrated development environment (IDE)

called Geany for our Python development. Geany provides a friendlier

interface compared to text-based editors such as nano to make it easier

to get into the swing of things. This tutorial will cover topics such as:

• Basic arithmetic

• Comparison operators, for example ‘equal to’ and ‘not equal to’

• Control structures, for example loops and if statements

By the end, we’ll have an advanced version of our ‘hello world’

application. Let’s dive straight in…

01 We don’t want to have messy folders on our new Pi, so let’s go to the file

manager and organise ourselves. Open the file manager by clicking the icon

next to the menu icon on the bottom left of the screen. Create a new folder by

right-clicking and selecting New>Folder, then type a name and click OK. We created

a folder called Python, and inside that created a folder called Hello World v2.

Staying organised

Use Python with PiUsing Python on Raspberry Pi

101

02 Start Geany by going to the LXDE menu and going to Programs. From

here, select Geany. Once you’re in the Geany interface, create a new

Python file from a template by selecting ‘New (with template)>main.py’. Delete

everything in this template apart from the first line: #!/usr/bin/env python. This

line is important because it means you can run the code from the command line

and the Bash shell will know to open it with the Python interpreter.

Starting Geany

It’s good practice to describe

what the program’s purpose

is at the top of the file. This

will help you out when

working on larger projects

with multiple files

It’s important to think about

data types. We convert the

number to decimal to make

sure that we

don’t lose any decimal

numbers during arithmetic

The stopping condition

for a while loop has to be

satisfied at some point in the

code; otherwise the loop will

never end!

The print function can only

accept string data types,

so we need to convert any

variables with a number data

type to a string before we

can print them to the screen

102

06 Now that we have a value in firstName, we need to output a welcome

message to the screen. We print to the screen in Python using the

print function. The print function is followed by a pair of brackets which

enclose the values to print. When using the addition operator with strings,

they are joined together. Note how firstName doesn’t need to be enclosed

by quotation marks because it is the name of a variable. If it was enclosed in

quotation marks, the text firstName would be output. We finish off by adding

a ‘\n’ character (new line character) to our output to leave one blank line

before we start our next example.

Printing a message

Use Python with Pi Programming in Python on the Raspberry Pi

03 It’s always a good idea to keep

saving your work with Ctrl+S

as you program, because it would

be a shame to lose anything you’ve

been working on. To save your file for

the first time, either press Ctrl+S or

go to the File menu and select Save.

Give the file a sensible name and

save it in the tidy folder structure you

created before. It’s a good habit to be

well organised when programming,

because it makes things much easier

when your projects become bigger

and more complicated.

Saving your work

04 Having detailed comments

in your code is important

because it allows you to note down

things you find confusing and

document complex procedures. If

another programmer has to work

with your code in the future, they’ll

be extremely grateful. Start by adding

a comment with a description of

what the program will do and your

name. All comment lines start with

a hash (#) and are not interpreted

as code by the Python interpreter.

We import the sys library so we can

use the sys.exit function to close the

program later on. We also import

everything from the decimal library

because we want to make use of the

decimal type.

Setting it up

05 A variable is data that is stored in memory and can be accessed via a

name. Our program is going to start by asking for your first name, store

that in a variable and then print out a welcome message. We’re going to add a

comment that explains this and create a variable called firstName. Notice how

we’ve capitalised the first letter of the second word to make it easier to read.

We want the firstName variable to hold the value returned by a function

called raw_input, that will ask the user for input. The question is passed into the

print function within brackets, and because this is a string it is enclosed within

quotation marks. A string type is basically a collection of characters. Note the extra

space we’ve added after the colon because the user types their input straight

after this question.

Variables

“It’s a good habit to be well organised
when programming”

103

09 We’re going to ask the user for a number by basically repeating the first

couple of lines we did. Once the user gives us a number, we’ll halve,

square and double it. The raw_input function returns the value that the user input

as a string. A string is a text-based value so we can’t perform arithmetic on it. The

integer type in Python can only store whole numbers whereas the decimal type

can store numbers with decimals. We’re going to do something called a type

cast, which basically converts a value with one type to another type. We’re going

to convert our number string to a decimal value because it’s likely that decimals

will be involved if we are halving numbers. If the number was of an integer type,

any decimal values would simply be cut off the end, without any rounding. This is

called truncation.

Working with numbers
07 The Debian image that we’re

currently using has a small

misconfiguration issue in Geany.

You’ll know if you have this problem

by trying to run your program with

either the F5 key or going to the

Build menu and selecting Execute.

If the issue is present then nothing

will happen and you’ll see a message

saying ‘Could not find terminal:

xterm’. Not to worry, it’s easy to fix.

Go to the Edit menu and then select

Preferences. Go to the Tools tab and

change the value for Terminal from

xterm to lxterminal.

Fixing a small issue

08 Now we’ve done that part, why not test it? It’s worth noting that you have

to save before running the program, or anything you’ve done since you

last saved won’t be interpreted by Python. Run the program by pressing the F5

key. Input your name by typing it and then pressing the Enter key. Once you have

done this, you’ll see a welcome message. If the program exits with the code 0

then everything was run successfully. Press Enter to close the terminal.

Testing our program

Use Python with PiProgramming in Python on the Raspberry Pi

Below The Raspberry Pi takes the ‘Pi’ part
of its name from its compatibility with the
Python programming language

12 To demonstrate a while loop and if statements, we will output a question

to the user that requires a yes or no answer. We’re going to ask them if

they want to continue – and for this we require either a lower-case ‘yes’, or a

lower-case ‘no’. A while loop is a loop that runs until a condition is met. In

this case, we will create a variable called yesOrNo and the while loop will

run while yesOrNo is false. The yesOrNo variable will be a Boolean type

that can be either True or False. The variable will be initialised with a

value of False, or the while loop will not run.

A while loop has the format ‘while [condition]:’ – where any code that

is part of the while loop needs to be indented in the lines below the

colon. Any code that is not indented will not be part of the while loop.

This is the same for an if statement. The condition is checked with

the comparison operator ‘==’. A single ‘=’ is an assignment operator

whereas a double equals is a comparison operator. Another

common comparison operator is ‘!=’ – which means ‘not equal to’.

We create a variable called ‘result’, which holds the result of the

question, do you want to continue? We then check this result is

valid with an if statement. Notice the ‘or’ operator which allows

two conditions to be tested. If the user inputs a correct value

then we set yesOrNo to True, which stops the while loop on the

next run. Otherwise, we output an error message and the while loop will

run again. The user can use the Ctrl+C command at the terminal to exit the

program at any time.

Input validation with While loops and If statements

Use Python with Pi Programming in Python on the Raspberry Pi

10 The main arithmetic operators in Python are + - / *, the latter two being

divide and multiply respectively. We’ve created three new variables

called numberHalved, numberDoubled and numberSquared. Notice that we

don’t need to specify that they should be decimal because Python gives a

type to its variables from the type of their initial value. The number variable is a

decimal type, so all values returned from performing arithmetic on that number

will also be of a decimal type.

Performing arithmetic

11 Now that we have performed our arithmetic, we need to print the results

using the print function. The print function only accepts string values

passed to it. This means that we need to convert each decimal value to a string

using the str() function before they can be printed. We’re using a print statement

with nothing between the quotation marks to print one blank line. This works

because the print function always adds a new line at the end of its output unless

told otherwise, so printing an empty string just prints a new line.

Printing our numbers

104

105

14 We’ll be using a while loop

that uses a number and a <=

(less than or equal to) operator as its

stopping condition. The while loop

will be used to increment the number

by 1, printing the change on each loop

until the stopping condition is met.

The count variable allows us to know

exactly how many times we have

been through the while loop.

Loops with numbers

15The while loop will run until the

count is 6, meaning that it will

run for a total of 5 times because the

count begins at 1. On each run, the

while loop increments the number

variable and then prints what is

being added to the original number,

followed by the result. Finally, the

count is incremented.

Incrementing numbers
with a loop

13 Next we will deal with the

result that was stored during

the while loop with if statements.

If the user typed ‘yes’ then we will

print ‘Continuing’. Otherwise, we will

print ‘Exiting’ and then call the sys.

exit function. You don’t have to do

anything else for the program to

continue because it will simply carry

on if the sys.exit function wasn’t called.

This code also shows that the newline

character \n can be used anywhere in

a string, not just in separate quotation

marks like above.

Continue or exit?

Use Python with PiProgramming in Python on the Raspberry Pi

17 Now that we’ve finished coding, save any changes you have made and run

your program with the F5 key.

Admire your work

16 The final step is to print that the program is exiting. This is the last line and

we don’t have to do anything else because Python simply finishes when

there are no more lines to interpret.

Finishing off

“The print function always adds a new
line at the end of its output”

Use Python with Pi Use Python to code new creations in Minecraft

106

Minecraft http://www.mojang.

com/games

Python https://www.python.org

McPiFoMo http://rogerthat.co.uk/

McPiFoMo.rar

What you’ll need… Use Python
to code new
creations in
Minecraft
Tap directly into Minecraft with Python and
produce fantastic creations using Forge mod

Sometimes, Minecraft can seem far more than just a game. It’s an

incredibly creative tool and with the use of Redstone and Command

Blocks you can produce some amazing worlds. We’re taking things a

step further by enabling you to plug Python code directly into Minecraft.

What you do with it is completely up to your imagination! MCPiPy was

developed by ‘fleap’ and ‘bluepillRabbit’ of https://mcpipy.wordpress.

com, to connect MineCraft Pi Edition with Python on the Raspberry Pi,

using open APIs.

However, with the use of Forge we have put together a package

that enables the use of Python in retail Minecraft. We’re using Raspberry

Jam developed by Alexander Pruss, a Forge mod for Minecraft which

implements most of the Raspberry Juice/Pi API.

Use Python with PiUse Python to code new creations in Minecraft

107

01Backup .minecraft in your home

directory. If you’re using a GUI,

you may need to press CTRL+H to view

the hidden directories. In terminal mv

~/.minecraft ~/minecraft-backup

should suffice.

Replace your
.minecraft directory

02Launch Minecraft as you

normally would, but after

logging in, select the Forge profile.

This should load Minecraft 1.8 with

Forge 11.14. You can play around with

the latest version of Minecraft and

download and install an updated

Forge if you wish, but these are the

versions we’ve found most compatible

with Raspberry Jam. You’ll know you’re

running the correct profile when you

see the version numbers in the bottom

left corner of the window. Create a

new super flat world in singleplayer

creative mode and you’re ready to

begin coding.

Launch Minecraft in
Forge mode

03Using your favourite text

editor, you’ll need to create a

new helloworld.py file and save it in

~/.minecraft/mcpipy directory:

 from mc import *

 mc = Minecraft()

 mc.postToChat(“Hello world!”)

Return to Minecraft and type /python

helloworld

Minecraft will now run your python

script, which should result in a chat

command saying Hello world!

Hello World – Implement
chat commands

Below You’ll need to run Minecraft
1.8 with the pre-installed Forge profile

Right Backup your original .minecraft dir and
copy over the modded install from McPiFoMo

108

Use Python with Pi

Print the total number of devices found

“If you look down to the ground below
your player character, you’ll see a diamond
block has been placed at your feet”

Use Python to code new creations in Minecraft

04Now, by using setBlock() and getPos() commands we can place blocks

into the world relative to our player’s position. Try adding the following two

lines to your helloworld script:

 playerPos = mc.player.getPos()

 mc.setBlock(playerPos.x,playerPos.y-1,playerPos.z,DIAMOND_ORE)

Then run /python helloworld again in Minecraft. You’ll see the chat message

again, but this time if you look down to the ground below your player character,

you’ll see a diamond block has also been placed at your feet. You can try replacing

DIAMOND_ORE with any other Minecraft block ID (i.e. DIRT/GRASS).

109

Use Python with Pi

Mmm, doughnuts

Common errors

Cannot find script

If you see red text stating ‘Cannot
find script’, check the name
and location of your PY file. All
of your Python scripts should
be in ~/.minecraft/mcpipy, for
Python and Minecraft to be able
to locate them. You don’t need to
append ‘.py’ to the end of your run
command, just be sure you’re using
the exact name of your Python
script file. /python doughnut will
work just as well as
/python doughnut.py, so long
as doughnut.py is stored in
~/.minecraft/mcpipy. If you can’t
see this directory, remember to
un-hide your files (CTRL+H).

05One of the pre-fab scripts that you will find in the MCPiPy collection is

the doughnut:

 from mc import *

 def draw_donut(mcx,mcy,mcz,R,r,mcblock):

 for x in range(-R-r,R+r):

 for y in range(-R-r,R+r):

 xy_dist = sqrt(x**2 + y**2)

 if (xy_dist > 0):

 ringx = x / xy_dist * R # nearest point on major ring

 ringy = y / xy_dist * R

 ring_dist_sq = (x-ringx)**2 + (y-ringy)**2

 for z in range(-R-r,R+r):

 if (ring_dist_sq + z**2 <= r**2):

 mc.setBlock(mcx+x, mcy+z, mcz+y, mcblock)

 mc = Minecraft()

 playerPos = mc.player.getPos()

 draw_donut(playerPos.x, playerPos.y + 9, playerPos.z, 18, 9,

GLASS)

 mc.postToChat(“Glass donut done”)

 draw_donut(playerPos.x, playerPos.y + 9, playerPos.z, 18, 6,

WATER_STATIONARY)

 mc.postToChat(“Water donut done”)

By changing the block ID from WATER_STATIONARY you can fill the doughnut with

any object type. Try filling the glass with lava. Then try changing outer shell from

glass to TNT.

06 If you get a ‘Script not

found’ error, this probably

means that you don’t have the mod

scripts installed in your Minecraft

directory. Check that you’ve replaced

.minecraft with the one from

McPiFoMo.

If you receive a ‘Cannot run program

“python”’ error, your game cannot

locate Python. Ensure you’ve got the

latest version of Python installed, and

that it’s installed in Path. In the Bash

shell type export ATH=”$PATH:/usr/

local/bin/python” to check.

Should you come into any problems

with memory leakage or infinite loops,

you can stop a script that’s running by

just typing /python.

Use Python to code new creations in Minecraft

Use Python with Pi Handle multiple tasks

110

Handle
multiple tasks
Your Pi project may need to deal with more than one
thing at a time. Learn how to handle multiple tasks

In this tutorial, we will look at how to use the multitasking capabilities

within Python to manage multiple tasks. In the standard library,

there are three main modules that are available. They are threading,

multiprocessing and concurrent. Each has its own strengths and

weaknesses. Since these are all part of the standard library, there should

not be anything extra that you will need to install.

First, we will look at the threading module. There are two ways that

you can use this module. The first is to use it to create new thread

objects that can be told to run some target function within your

program. The following is a simple example:

 import threading

 def my_func():

 print(“Hello World”)

 my_thread = threading.Thread(target=my_func)

 my_thread.start()

Assuming that your tasks can be partitioned into separate functions, you

can create a thread for each of these functions. One thing to be aware

of is that these new threads will not start executing the function code

until you call the start method. At that point, the target function will

start running asynchronously in the background. You can check to see

whether or not a given thread is done by using code like that below:

 if my_thread.is_alive():

 print(‘This thread is still running’)

At some point in the main body of your program, you are going to want

to use the results from the functions running in these threads. When this

happens you can use the join() method of the thread object. This halts

Use Python with PiHandle multiple tasks

111

the main core of your program and forces it to wait until the thread exits.

The thread exits by default when the running function exits.

But, how do you write code that uses threads well? The first item to

consider is whether you will be using data that is globally available or

whether you are using data that should only be visible within the current

thread. If you do need local only data, you can create a local object that

can store these values. The following code stores a string with your

author’s name in it:

 mydata = threading.local()

 mydata.myname = ‘Joey Bernard’

This would be code used within the function being run by a thread.

If you need to use global data, you need to consider how different

threads may try to use this global data. If everyone is reading from a

given variable, you won’t run into any issues. The problem arises when

you have multiple threads that may try to write a given variable. In this

case you’ll end up with a situation known as a race condition, where

one thread may overwrite the data from another. In these cases, you will

need to use lock objects to manage access to these global variables. A

basic example would look like:

 mylock = threading.Lock()

 counter = 0

 def func1():

 mylock.acquire()

 counter = counter + 1

 mylock.release()

As you can see, you create the lock object in the main body of your

program. Then, within the function code, you try to acquire the lock. If it

is free, you get access to it and it is locked. If the lock object has already

been locked by another thread, then this call to acquire blocks and

waits until the lock has been released. This is why you need to be really

careful to always have a release statement for every acquire statement.

Otherwise, you’ll have a bug that will be almost impossible to find after

the fact. This also introduces a bottleneck to your program, so you want

to make sure that whatever code exists between the acquire and lock

is the bare minimum required to do the necessary work. This is the

simplest form of locking mechanism available in Python. If your needs

112

Use Python with Pi Handle multiple tasks

are greater, you can look at some of the other options to see if they

might offer better control access. Along with controlling access to global

data, you may need to communicate directly between threads. This can

be handled through an event object, which can be used to set a flag to

true or false and make that visible to other threads. As an example, the

code below shows how to set and use such a flag:

 event1 = threading.Event()

 def func1():

 event1.set()

 def func2():

 if event1.set():

 print(‘I got a flag from func1’)

Sometimes, the only communication you need is to know when all of
the threads have completed some stage of their work. Say, you multiple
threads loading data files and you need to wait until everyone is done
before moving on to the next stage. In this case, you can do so with
barrier objects. Below, you can see how you could add a barrier to the
two threads (above):

 barrier1 = threading.Barrier(2)

 def func1():

 barrier1.wait()

 def func2():

 barrier1.wait()

In the above code, you need to set how many threads will take part in
the barrier object when you create it. Then, when threads use it and
call the wait method, they will block until all of the threads call the wait
method. The threading module is a light, fast and easy method to add
the ability divide up the processing within your code, but it does suffer
from one major issue. Within the Python core engine, there is a structure

113

Use Python with PiHandle multiple tasks

called the GIL (global interpreter lock). The GIL is
used to control access to certain core functions and
data within the Python interpreter. This means that
at certain points, your threads will run only one at a
time. This can introduce a serious bottleneck in some
situations. If you are in this boat, then you may need
to use the multiprocessing module. This module uses
subprocesses to bypass the GIL completely in order
to get true parallel operation. In its most basic use
case, you could use something like the code below
to get behaviour similar to what you get with threads:

 import multiprocessing

 def f(name):

 print(‘hello’, name)

 p = multiprocessing.Process(target=f,

args=(‘bob’,))

 p.start()

 p.join()

This appears to be the same on the surface, but what
is happening in the back-end is radically different. The

process object starts up a new Python engine in one
of a number of ways. The default on UNIX systems,
like the Pi, is to fork a new process. The fork method
essentially makes a complete copy of the current
Python engine and executes the given function.
Another method is to spawn a new Python engine.
In the spawn method, only the parts of the current
Python engine that is needed for the new Python
engine. If you do need to change it, you can use the
following code:

 multiprocessing.set_start_

method(‘spawn’)

If you need to start many subprocesses, this may

help speed your code up. The set_start_method

should only ever be called once in a given program.

Hopefully, this tutorial has given you some ideas on

how to include the ability to manage multiple tasks

in parallel. This can be a powerful tool to make the

software design of your project more flexible and

capable. Be aware that we have only been able to

cover the most basic topics in such a short tutorial.

Other ways to do parallelisation

We’ve looked at how to handle parallel
tasks strictly within a Python program. But
sometimes you need to run other pieces
of code asynchronously. In these cases,
you can use the subprocess module to
execute external code and interact with
it. As an example, we will look at how
you could run the ls program and use
its output.

 import subprocess

 subprocess.run([“ls”, “-l”],

stdout=subprocess.PIPE)

The run method accepts as input the
external program to be run, along with
any parameters. By default, run doesn’t
send the output from the external
program back in to the main Python
code. In this example, we set the input
parameter stdout to be the PIPE value, so

the output from the external program
is sent back to the calling Python code.
Sometimes, you may want to run this
external program through a shell. In order
to do this, you will need to use the input
parameter shell=True.

The run method is a simplified
interface for running external programs.
When you need more control over how
the external programs execute, you can
use the Popen method.

 proc1 = subprocess.Popen([‘/bin/

ls’, ‘-l’])

To communicate with this external
process, you can use the communicate
method. You can get both the stdout and
stderr streams with the following code:

 outstream, errstream = proc1.

communicate()

If you want to also send input to the
external process, you can include a
parameter named input with the data.
This blocks until the external process
finishes and exits. If you need to read
from these streams without waiting for
the external program to finish, you can
get access to pipes for stdout and stderr
streams. For example, the following code
reads from the standard output stream:

 proc2 = subprocess.Popen([‘ls’,

‘-l’], stdout=subprocess.PIPE)

 proc2_output = proc2.stdout

 print(proc2_output.read())

If you need to, you can akways explicitly
stop the external process using
terminate() or kill() methods.

Use Python with Pi Create a Pi-powered virtual reality setup

Raspberry Pi 3

8GB SD card

Xbox 360 controller

Oculus Rift Developer Kit

(optional)

What you’ll need… Create a
Pi-powered
virtual reality
setup
Combine the Raspberry Pi, Python-VRZero
and 3D graphics module Pi3D to edit or make
virtual reality environments

Virtual Reality is huge now and has come a long way since the concepts

and CGI visuals of Stephen King’s Lawnmower Man. It is one of the fastest

growing areas of technology and you can now design models, explore

new places and play games all within a virtual environment.

A professional VR hardware package is expensive and will set you back

several hundred pounds. However, it’s possible to emulate the VR setup

up using a Raspberry Pi, Python-VRZero and a 3D graphics module,

Pi3D. Now, this is purely for fun and learning, so don’t expect huge

gaming PC frame rates, although some of the demos do peak

at around 25-30 FPS on a Raspberry Pi 3. This tutorial shows

you how you create a VR setup using the Raspberry Pi 3, a

Xbox 360 controller and some Python code. Our first

steps will walk you through how to install the

required software and modules. We’ll then

cover configuring the hardware

and drivers to enable you to

control movement within the

VR environment. The final

steps look at the program

code structure, where you can

develop your own versions of the

VR demo or design and build your

own virtual worlds.

114

02Before you get started, it is recommended that you use a new SD card

with a freshly installed image of the Raspberry Pi’s official operating system,

Raspbian. You can download the operating system directly from the Raspberry Pi

website at https://www.raspberrypi.org/downloads. Install using your normal

preferred method. This project setup was tested using the Pixel OS image.

Use Python with PiCreate a Pi-powered virtual reality setup

115

01Using Python-VRZero is a frictionless way to get started creating your own

virtual reality worlds in Python on a Raspberry Pi and combine an Oculus Rift.

The program adds a number of features on top of Pi3D and solves the headaches

of configuring a Pi 3 for VR development in Python. It includes default input event

handling for keyboard, mouse, controller and the Rift for moving and altering the

view of the player. It also supports Xbox 360 controller configuration and uses

OpenHMD to read the rotational sensor reading from the Rift.

Python-VRZero

04Now install the package

dependencies for the Xbox 360

controller. You can keep the library up

to date by adding the code --upgrade

to the end of the first line. Then install

Pi3D software which will render the

images. Type the two lines below as

shown and press Enter.

 sudo apt-get install -y

libhidapi-libusb0 xboxdrv

 sudo pip3 install pi3d==2.14

Fresh SD card install

Update the Pi

Install the Xbox 360
controller drivers

Keep up to date

Python-VRzero is an ongoing
development, and updates and
improvement are always being
added. Refer to the GitHub
repository for the latest updates:
https://github.com/WayneKeenan/
python-vrzero

03Boot up your Raspberry Pi. At this stage you do not need to connect the

Xbox 360 controller or Oculus Rift. When loaded, open the LXTerminal and

update and upgrade the OS typing the two lines below. This may take some time.

 sudo apt-get update

 sudo apt-get upgrade

116

Use Python with Pi

Install software – part 2

Copy over the
configuration files – part 1

Copy over the
configuration files – part 2

Rift Development Kit 1

Create a Pi-powered virtual reality setup

Install software – part 1

05The Python-VRzero is available

from the GitHub website and is

easy downloaded using the git clone

command, line one. Type this into your

LXTerminal. Then move to the python-

vrzero folder (line two) and install the

program (line three).

 sudo git clone https://

github.com/WayneKeenan/python-

vrzero

 cd python-vrzero

 sudo python3 setup.py

install

06Once the installation

completes, select and install

the OpenHMD (line one) which

enables the data from the Oculus Rift

sensors to be read and worked with.

Type line one into the LXTerminal and

press Enter, then line two to install

the required module. Enter line three

and press Enter to link together all the

required libraries:

 sudo dpkg -i install/

openhmd_0.0.1-1_armhf.deb

 sudo apt-get install -f

 sudo ldconfig

07To interact with the Oculus Rift’s rotation sensor and the Xbox 360 controller,

you’ll need to copy over the configuration files. This enables you to orientate

and look around the environments. As you turn your head to the left the VR

environment will adjust as if you are looking to the left. Type both of the lines below

into the LXTerminal and press Enter after each line:

 sudo cp config/83-hmd.rules /etc/udev/rules.d/

 sudo cp config/xboxdrv.init /etc/init.d/xboxdrv

08The Xbox 360 controller setup requires an additional command line to copy

the default configuration file to the folder which contains the Xbox Drivers.

This file contains all the mapping for the buttons, paddles and joysticks. Type in the

line as shown below and press Enter:

 sudo cp config/83-hmd.rules /etc/udev/rules.d/

 sudo cp config/xboxdrv.init /etc/init.d/xboxdrv

09 If you do not have an Oculus Rift kit you can still use a HDMI monitor to

display the output. Move to Step 11. If you own or have access to the

Oculus Rift Development kit, you will need to copy over the configuration file into

the config.txt file. This file contains the configuration settings for the operating

system which are loaded when you Raspberry Pi boots up. Type the line below into

the LXTerminal and press Enter.

 sudo cp config/config_DK1.txt /boot/config.txt

117

Use Python with Pi

Running a demo

Hardware controls
and setup

Rift Development Kit 2

Complete the set up

Create a Pi-powered virtual reality setup

10 If you have access the Oculus Rift development kit version 2, then you will

again be required to copy over a configuration file. Except this time select the

config_DK2.txt file and copy the contents to the boot/config file. In the LXTerminal

type the line below and press enter. Ensure that you select the correct configuration

for the kit version which you have.

 sudo cp config/config_DK2.txt /boot/config.txt

11Finally run two commands. The first command (line one) enables the root-

less USB udev config setup which was set up earlier in Step 7. The second

command (line two) disables BluetoothLE. This is required as it stops the OpenGL ES,

from hanging. Ensure that each line is typed in as printed, and press Enter after each

line to enable the command to run:

 sudo udevadm control --reload-rules

 sudo systemctl disable hciuart

12 This completes the installation and project setup. From the LXTerminal,

shutdown the Raspberry Pi (line one). Attach the Xbox 360 controller and if

you have one, the Oculus Rift. Turn the Rift on first before starting the Pi to ensure

that it registers the hardware when the Pi boots up:

 sudo shutdown

Restart and plug in

13Python-VRzero sets up sensible

defaults for handling input

events from attached devices. The

keyboard controls movement and the

default mappings are: WSAD, SPACE

for jump and ENTER for action. The

mouse controls looking (and direction

of travel when moving). Mouse button

1 is action and mouse button 2 is

jump. An Xbox 360 controller controls

movement and view using the left

and right stick respectively. The ‘A’

button is ‘action’ and the ‘B’ button is

jump. The OpenHMD library is used

to read the HMD sensor data. VR

Zero automatically rotates the Pi3D

Steroscopic camera in response to

HMD readings.

14Now for the fun part, which is

to run a demo program and

immerse yourself in a VR world. There

are several to choose from, and each

one demonstrates the features of the

Python–VRZero program. The demos

need to be run using Python 3 and

executed as a script from the demos

folder. (If you are using a Oculus Rift

you will need to navigate to the folder

via the display inside the Rift headset.)

Open the LX Terminal, and move to

the python-vrzero/demos folder, line

one. To list the available demos type

ls, this will list the file names of all the

demos. To run a demo type ./ followed

by the name of the demo, for example

to run the abbey demo type, ./abbey.

py (line 2). You will be presented with

a VR render of Buckfast Abbey, to end

the environment just press Escape on

the keyboard.

 cd python-vrzero/demos

 ./abbey.py

118

Use Python with Pi

Editing the textures Rift Development Kit 2

Try some other demos

You may be interested in trying out
some other demonstrations which
are availble at https://github.com/
pi3d/pi3d_demos. Try riding a
Roller Coaster or driving a tank! This
resource also provides a guide how
to create your own models using
the Pi3D python library and code.

Create a Pi-powered virtual reality setup

15 If you have used Pi3D before

you can access the program

template to set up your own models.

If not, then change the textures in the

Shape demo program. First open the

LXTerminal and type sudo idle 3 to

load Python 3. Select File and open,

navigate to the following folder

/home/pi/python-vrzero/demos

and select the shapes.py program.

Locate line 14 which begins patimg

= pi3d (pictured, top of the page).

This is the first line of code which tells

the program which textures to load

for each shape. There are several after

which can also be edited.

16Using the folder explorer, click the file icon to navigate to the textures in the

texture folder /home/pi/python-vrzero/demos/textures. You will see the

files that are used for the shapes demo. Replace the image file with one of your own

and then on line 14 of the program change the file name to match your selected

image file choice.

If you don’t want to use your own texture file then you can change the file name

to one of the other image files listed in the folder. Press F5 to save and run the demo.

You will notice that the shape textures have changed.

119

Use Python with Pi

Alter the message

Create a Pi-powered virtual reality setup

17 Return to your Python editor and locate line 71. This holds the message

which is displayed in the shapes VR demo. Change the text to a sentence

of your choice. Save and run the program. Congratulations you have now begun

to modify your own VR demos. Experiment with the program files for each of the

demos editing the textures. For example, how about creating a church made out of

chocolate? If you want to try other demos, find additional details at https://github.

com/pi3d/pi3d_demos.

Use Python with Pi Use your Raspberry Pi to find and track your phone

120

Raspberry Pi 3

Bluetooth USB dongle (if using
an older Pi model)

What you’ll need…

Use your
Raspberry Pi to
find and track
your phone
Create a program that locates Bluetooth
devices and responds to them

The Raspberry Pi model 3 saw the introduction of embedded Wi-Fi and

Bluetooth capabilities. This now makes it even easier to interact with

Bluetooth-enabled devices such as mobile phones, tablets and speakers.

The Python programming language supports a range of libraries

that enable you to interact, monitor and control various elements of a

Bluetooth device. This tutorial combines the Pi’s Bluetooth hardware with

Python code to create three simple but useful programs. First, build a

short program to search for Bluetooth-enabled devices and return the

12-part address of each device. Once you have obtained the addresses,

you can then scan and find Bluetooth services that are available on that

particular device. Finally, use the Bluetooth address and some conditions

to check which devices are present in a building and in turn, which

people are present or absent in a building, responding with a desired

action – it’s a kind of automated Bluetooth checking-in system.

Use Python with PiUse your Raspberry Pi to find and track your phone

121

Is your dongle
working?

If you are using a USB Bluetooth
Dongle then you can check that
it is working by plugging it in,
then restarting your Raspberry
Pi by typing the command
sudo reboot. When reloaded,
check that the Dongle has
been recognised; load the
LX Terminal window and
type lsusb. This will list all the
connected USB devices. You
can also type hcitool dev to
identify the dongle and return
its USB address.

01Bluetooth is a wireless standard for exchanging data between devices

over short distances of between one and ten metres. The current version,

Bluetooth v5, was notified in June 2016 and has an increased range of over 200

metres. It was released in 2017 and will probably be a staple of many IoT devices and

applications. Bluetooth uses the standard IEEE 802.11, which is the same standard as

Wi-Fi. They both have similarities such as setting up a connection, transferring and

receiving files and streaming audio and media content. If you have a Pi 2 or lower,

you can still create and use these programs by using a Bluetooth USB dongle.

Using Bluetooth

02Although the Raspberry Pi OS image comes with a Bluetooth library for

interfacing with devices, for this tutorial you will want to control the interface

with Python code. Load up your Pi and open the LX Terminal window. Check

for and update/upgrade the OS, typing in lines 1 and 2. Then install the Python

development tools, line 3. Finally install two further Bluetooth development libraries.

Once they have completed, restart your Pi by typing sudo halt.

 sudo apt-get update

 sudo apt-get upgrade

 sudo apt-get install python-pip python-dev ipython

 sudo apt-get install bluetooth

 libbluetooth-dev

 sudo pip install pybluez

Install the required libraries

03Load the LX Terminal and type sudo idle, this will open the Python editor

with super-user privileges, which will give you access to the USB hardware

via Python code. Start a new Window and import the first Bluetooth module, line

1. Then add a short message to inform the user that the program is searching for

nearby devices.

 import Bluetooth

 print(“Searching for device...”)

Load Python

04The next line of your program searches for the names of the Bluetooth

enabled devices. Each device must have Bluetooth enabled and be

discoverable in order to be found. On the next line down, create a variable called

nearby_devices to store the names and use the code bluetooth.discover_devices

to look up the names of the devices.

 nearby_devices = bluetooth.discover_devices(lookup_names =

True)

Search for the names of the devices

122

Use Python with Pi

05Each of the names of any discoverable devices are now stored in a variable.

Use the code len(nearby_devices) to return the number of items stored in

the variable, this is the number of Bluetooth devices the program has found. Then

print out the total number of devices. Add the following code after the previous

line of your program.

 print(“found %d devices” % len(nearby_devices))

Print the total number of devices found

06Each Bluetooth-enabled device has a Bluetooth address that is a

combination of 12 alphanumeric characters; for example, 69:58:78:3A:CB:7F.

The addresses are hexadecimal, which means they can contain numbers from 0 to

9 and letters from A to F. Most devices manufactures will include the address on a

sticker attached to the hardware or within the user manual.

The Bluetooth address (BD_ADDR)

Is your Bluetooth
Dongle compatible?

If you have an older Raspberry
Pi model 1, 2 or the Pi Zero
then Bluetooth capability is not
included. However, you can
buy a USB Bluetooth dongle
and attach it via one of the
USB ports to add capability.
Not all Bluetooth dongles
are compatible so there is a
developing list of the tried and
tested ones available. Check
here before you purchase one:
http://elinux.org/RPi_USB_
Bluetooth_adapters

Use your Raspberry Pi to find and track your phone

123

Use Python with Pi

Full code listing

import bluetooth

print(“Searching for devices....”)

nearby_devices = bluetooth.discover_devices(lookup_

names = True)

print(“found %d devices” % len(nearby_devices))

for addr, name in nearby_devices:

 print(“ %s - %s” % (addr, name))

[Find a list of services].py

#!/usr/bin/env python

import bluetooth

from bluetooth import *

device_address = “98:44:98:3A:BB:7C”

#find services on the phone

services = find_service(address=device_address)

#print services

for i in services:

 print i, ‘\n’

[Check to see who is in].py

#!/usr/bin/python

add a def and then a while statement

import bluetooth

import time

print “Blue-Who Finder”

#find the devices and the name of the device

devices = bluetooth.discover_devices(lookup_names =

True)

#print how many devcies are found

print(“Found %d devices” % len(devices))

#print the devices and the names

for addr, name in devices:

 print(“ %s - %s” % (addr, name))

time.sleep(2)

print “Check to see who is in the building”

print “Checking “ + time.strftime(“%a, %d %b %Y

%H:%M:%S”, time.gmtime())

time.sleep(1)

if len (devices) == 0:

 print “No one is currently in the building”

#check the addresses against list to see who is near

for person in devices:

 device = bluetooth.lookup_name(“68:88:98:3R:BB:7C”,

timeout=5)

 if (device != None):

 print “TeCoEd is in”

 else:

 print “Tecoed is out”

 time.sleep(1)

 device2 = bluetooth.lookup_name(‘CC:3B:4F:CA:5B:1A’,

timeout=5)

 if (device2 != None):

 print “The Boss is in the building, back to

work”

 else:

 print “The Boss is still out, Facebook time!”

 time.sleep(1)

 device3 = bluetooth.lookup_name(“00:26:DF:6F:D2:C8”,

timeout=5)

 if (device3 != None):

 print “Wow Sherlock is here O wise one!”

 else:

 print “Sherlock is still out on a case”

 time.sleep(1)

 device4 = bluetooth.lookup_name(“28:18:78:47:0C:56”,

timeout=5)

 if (device4 != None):

 print “Babbage is present in the building”

 else:

 print “Babbage is not here”

 device5 = bluetooth.lookup_name(“E0:W8:47:77:6F:41”,

timeout=5)

 if (device4 != None):

 print “We have a Bogie in the area!”

 else:

 print “Airspace is clear”

“The Python programming language supports a range of
libraries that enable you to interact, monitor and control various
elements of a Bluetooth device”

Use your Raspberry Pi to find and track your phone

124

Use Python with Pi

09On the next line down, enter the address of the device that you want to find

the services on. Use the previous program or look at the sticker to obtain

the address. Next, create a variable called ‘device_address’ to store the address. Use

the following code and replace the example address with the Bluetooth address of

your device.

 device_address = “69:58:78:3A:CB:7F” # enter address of device

Set up the address to find

10On the next line down, add the code to find the services that your device

supports. Create a new variable called services, which will store a list of the

services. Use the code, find_services, followed by the Bluetooth address of your

enabled device to search through a list of available services and store each of them

in the ‘services’ variable.

 services = find_service(address=device_address)

Find a service

Variables

A variable is a location in the
computer’s memory where
you can store data. In order to
find the data again you give
the variable a suitable name
or label. For example, days =
5. This means that the ‘days’
variable current holds the
number five.

08Run the previous program and write down the Bluetooth address of the

device. Start a new Python program and save it. Next open up a new Python

window and start a new program. Input the two required libraries, lines 1 and 2.

 #!/usr/bin/env python

 import bluetooth

 from bluetooth import *

Find the available services on a Bluetooth device

07For each of the devices that the program has located, (each of the items in

the list), print out the address of the device and also the name of the device.

This information is used in the next sections to find out what available services a

device has and also to add an action when a device is found. Save the program and

then run it, ensuring that the any devices to be found are in Discovery mode. You will

be presented with a list of the devices that includes the name and address of each.

 for addr, name in nearby_devices:

 print(“ %s - %s” % (addr, name))

Print the name and address of the device

“Each Bluetooth-enabled device has a
Bluetooth address that is a combination
of 12 alphanumeric characters”

Use your Raspberry Pi to find and track your phone

125

Use Python with Pi

11The last step of the program is to print out each of the services. These are

stored in a list and therefore need to be printed out one line at a time.

Create a loop using the code, for i in services, line 1. This loop will check for each

of the individual items in the list. It will then print each of the items in the list, each

Bluetooth service, line 2. Use the code ‘\n’ to print each service onto a new line.

 for i in services:

 print i, ‘\n’

Print out each service

12 Save and run your program and you will be presented with a long list of

services, especially if you are using a modern device. Using these services

with Python is more complex and requires several other lines of code. However,

you can potentially transfer and receive files, stream music and even shut the device

down. There are more details and commentary on the Blueman Github page,

https://github.com/blueman-project/blueman. Remember though that these tools

are purely for personal use.

What are the services?

“You can transfer and receive files, stream
music and even shut the device down”

Use your Raspberry Pi to find and track your phone

126

Use Python with Pi

14Once a device has been searched for, check to see if it is present and

responds, line 1. Use an IF statement to see if the device is not found. This

uses the symbol ‘!=’, which means ‘is not’. However, the code is checking if it is not

‘None’ – in other words the device is found. If it finds the named device then print

out a message, line 2. If it does not find the device, line 3, then print out a message

to notify the user, line 4. Add these lines of code underneath the previous line.

Ensuring that your Bluetooth is enabled, save and run the program to find

your device.

 if (device != None):
 print “TeCoEd is in”

 else:

 print “Tecoed is out”

Respond if the device is found

15To find other devices and respond with an action, simply use the same

sequence of code but first create a different variable to store the response in.

Add the code on the next line down and remember to de-indent it. Rename the

variable, for example call it device_one and edit the address to match that of the

second device.

 Device_one = bluetooth.lookup_name(“44:67:73:6T:BR:7A”, timeout=5)

Find a different device

13 In Step 7 you used a short program to discover the Bluetooth-enabled device

and check and return the address of the device. Now use the bluetooth.

lookup_name code line to search for a particular device and return whether it is

found or not. If it is found then the device is present and if not, then we can assume

the device is not. However, remember that the Bluetooth may be turned off. In your

Python program add the line to locate the device, replacing the example address

with the address of the one that you want to locate.

 device = bluetooth.lookup_name(“33:38:33:6A:BQ:7C”, timeout=5)

Find a device and a person

Use your Raspberry Pi to find and track your phone

127

Use Python with Pi

16As before, check and respond, line 1, using an IF statement to see if the

device is not found. Remember to use the new variable name, in this

example, device_one. If it finds the named device then print out a message, line 2. If

it does not find the device, line 3, then print out a message to notify the user, line 4.

Add these lines of code underneath the previous line. Save and run the program to

find the two particular devices within your location.

 if (device_one != None):

 print “Linux Laptop is in”

 else:

 print “Linux Laptop is out”

Another response, the next device is found

17 To customise the project further you could add your own action to the

devices on being discovered. For example, use a strip of LEDs to flash

each time a device enters the location and is detected. Or use individual LEDs

for each individual device to indicate if the device is present or not. How about

combining the program with an LCD screen as a message board for who is present

and who is out? For more inspiration, check out https://www.youtube.com/

watch?v=qUZQv87GVdQ

Add an alternative action

Use your Raspberry Pi to find and track your phone

Pro tips and

step-by-step

tutorials from

digital artists

and illustrators

Master new

skills and create

beautiful items

for your home

and family

Learn and

get creative

with drawing

and colouring

activities

DISCOVER OUR
GREAT BOOKAZINES

From crochet and quilting to painting and Photoshop,

pick up a book that will take your hobby to the next level

Take your

hobby to the

next level with

expert advice

and top tips

@futurebookazinesFollow us on Instagram

www.magazinesdirect.com

HOW TO USE
EVERYTHING YOU NEED TO KNOW ABOUT
ACCESSING YOUR NEW DIGITAL REPOSITORY

To access FileSilo, please visit www.filesilo.co.uk/1710-2

01 Follow the on-screen

instructions to create

an account with our secure

FileSilo system, log in and

unlock the bookazine by

answering a simple question

about it. You can

then access the

content for free at

any time, and

download it to

your desktop.

02 Once you have

logged in, you are

free to explore the wealth of

content available on FileSilo,

from great video tutorials

and exclusive online guides

to superb downloadable

resources. And the more

bookazines you purchase,

the more your instantly

accessible collection of

digital content will grow.

03 You can access

FileSilo on any

desktop, tablet or

smartphone device using

any popular browser (such

as Safari, Firefox or Google

Chrome). However, we

recommend that you use a

desktop to download

content, as you may not be

able to download files to

your phone or tablet.

04 If you have any

problems with

accessing content on

FileSilo, or with the

registration process, take

a look at the FAQs online

or email filesilohelp@

futurenet.com.

Python
The Complete Manual

�4���Learn to use Python
 Master the essentials and code simple projects

as you learn how to work with one of the most

versatile languages around

4��Program games
 Use what you’ve learnt to create playable games,

and see just how powerful Python can be

4�Essential tips
 Discover everything you need to know about

writing clean code, getting the most from

Python’s capabilities and much more

4��Amazing projects
 Get creative and complete projects including

programming games, using Pi for a VR set up,

reading emotions and tracking your phone

4��Create with Raspberry Pi
 Unlock the real potential of your Raspberry Pi

computer using Python, its officially recognised

coding language

4��Master building apps
 Make your own web and Android apps with

step-by-step tutorials

4��Put Python to work
 Use Python for functional projects such as

scientific computing and make reading websites

offline easier and more enjoyable

4���Free online resources
 Download all of the tutorial files you need to

complete the steps in the book, plus watch

videos and more with your free FileSilo resources

9
0
0
0

9
0
2
1

