
High-Performance Graphics 2025
A. Knoll and C. Peters
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 8

RenderMan XPU: A Hybrid CPU+GPU Renderer for Interactive
and Final-Frame Rendering

Per Christensen, Julian Fong, Charlie Kilpatrick, Francisco González, Srinath Ravichandran, Akshay Shah, Ethan Jaszewski,

Stephen Friedman, James Burgess, Trina M. Roy, Tom Nettleship, Meghana Seshadri, and Susan Salituro

Pixar Animation Studios

Figure 1: Bonnie’s room rendered at 1024×554 resolution with 1024 samples per pixel. Compared to the previous (CPU-only) version of
RenderMan, this image renders 2.3 times faster on a CPU, 8.0 times faster on a GPU, and 9.9 times faster using both a CPU and a GPU.
©Disney/Pixar.

Abstract
RenderMan XPU is a rewrite of Pixar’s RenderMan renderer, designed to run on both CPUs and GPUs. Like its predecessor, it
is a progressive path tracer, suitable for both interactive previews and high-quality final-frame rendering, but it utilizes modern
hardware and software techniques to run significantly faster. Most source code is shared between the two platforms; code for
materials (bxdfs) and light transport (integrators) is compiled with a C++ compiler for CPUs and a CUDA compiler for GPUs,
with templating, specialization, and a few macros to handle syntax differences and parallel execution abstractions. The shaders
that provide the material input values are written in OSL; we use LLVM so that the same OSL code will run on both types
of hardware. Only the low-level ray tracing code and texture lookup and caching code is separate. Typical speedups over our
previous renderer (for high-quality final-frame images) are 1.8× to 2.3× on CPUs, 5× to 10× on GPUs, and 6× to 15× on both.

1. Introduction

Pixar’s RenderMan has been used to render high-quality animation
and visual effects for hundreds of movies, and is also used for inter-
active previews. This paper describes RenderMan XPU, the newest

generation of RenderMan. We call it “XPU” because it can run on
CPUs, GPUs, or both. Our novel contribution is a renderer that can
utilize heterogeneous hardware, provides the features necessary for
final-frame rendering, and is fast enough for quick feedback during
interactive preview work. Our main design goals are:

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



2 of 17 Christensen, Fong, Kilpatrick, et al. / RenderMan XPU

• Performance: To obtain high performance by running on hetero-
geneous hardware (CPUs and GPUs) and fully utilize their re-
spective strengths with respect to compute power and memory
size.

• Modular architecture: a) Several different integrators for shape
visualization, texture and lighting layout, and full path tracing.
b) Many different material models ranging in complexity from
constant color to a complex material with more than 120 input
parameters. c) Material parameters provided by texture maps and
programmable shaders.

• Versatility and consistency: A single renderer designed for inter-
active previews (with quick feedback during design decisions),
and also for final-frame movie rendering (with all the required
advanced features), thereby ensuring predictability and consis-
tent results.

Most of the XPU codebase is shared between CPUs and GPUs.
This has two major benefits: we will always render the same per-
ceptual image on the two platforms (modulo floating-point differ-
ences), and it is simpler to maintain and debug the codebase.

Materials (bxdfs) range from simple constant-colored emitters to
complex, physically realistic (but artist controlled) many-layered
materials with multiple specular lobes, non-Lambertian diffuse,
iridescence, fuzz, subsurface scattering, and more. The material
sample-generation and evaluation functions are written in a C++
subset, compiled with a C++ compiler for CPUs and a CUDA
compiler for GPUs. We utilize templates, specialization, and a few
macros to handle syntax differences and parallel execution abstrac-
tions that translate to explicit loops over shading points in C++, but
to a single-point abstraction in CUDA.

Typically, the material parameter values (bxdf inputs) are pro-
vided by shaders. These shaders are written in OSL (Open Shading
Language) [GSKC10]. The same OSL shader runs on both types
of hardware: the OSL shading code is compiled with LLVM (low-
level virtual machine) with runtime specialization for execution on
CPUs and GPUs.

The only code that is totally separate for the two platforms is
low-level ray tracing and texture cache lookups. We use BVH
building and ray intersection similar to Embree [WWB*14] for
CPUs and CUDA code as an alternative to OptiX [PBD*10] for
GPUs. For texture tile caching, we initially implemented a solution
similar to Garanzha et al. [GBPG11], but ultimately came up with
a different approach.

RenderMan XPU is a complete rewrite. After initial prototyping
and testing, this project started in earnest in 2017. We focused
first on look development since the scenes are simpler (less ge-
ometry and simpler illumination) and require fewer features than
final frames; our goal was to replace the in-house GPU renderer
in the real-time shading preview tool Flow. More recently we have
moved on to scenes with the full geometric and shading complex-
ity of typical movie frames. When the same renderer is used both
for previews and final rendering, the artists have confidence that
the decisions they make in the interactive session will be faithfully
carried through to the final frames.

Even though RenderMan XPU is a rewrite of the renderer, the
functionality is the same as the previous version (RenderMan RIS)

from a user point of view — with a few carefully chosen omis-
sions — but much faster. All the advanced features needed for pro-
duction rendering are present: motion blur, depth of field, global
illumination, subsurface scattering, volumes, arbitrary output vari-
ables (AOVs), light path expressions (LPEs), light linking, adaptive
sampling, checkpointing, deep output, and more; please see Chris-
tensen et al. [CFS*18] for more details. (One exception is that we
still need to implement efficient light selection that is able to handle
more than a few dozen light sources.)

With our new architecture, rendering is faster than the previous
version — even on the same CPU hardware. The speedups com-
pared to RenderMan RIS vary depending on geometric and shading
complexity and many other factors, but for our benchmark scenes,
we typically see speedups around 1.8× to 2.3× for CPU render-
ing, 5× to 10× for GPU rendering, and 6× to 15× for combined
CPU+GPU rendering. In extreme cases, we have seen speedups of
up to 18×. The CPU speedups — where XPU runs on the exact
same hardware as RIS — are caused by better data access and exe-
cution coherency.

For now, RenderMan XPU only runs on CPUs from Intel and
AMD and on GPUs with CUDA from Nvidia. But the architecture
is designed to be flexible enough to support a wider variety of plat-
forms; ongoing porting work targets Intel GPUs via SYCL, and we
have compiled for Apple Metal as a proof of concept. CPUs usu-
ally have more memory than GPUs, so truly massive scenes can
currently only render on CPUs. (However, future unified memory
systems might change that.)

This paper starts with an overview of related work, then de-
scribes the architecture of the RenderMan XPU renderer and its
key features and capabilities, followed by performance results, dis-
cussion and future work, and ends with a conclusion.

2. Background and Related Work

The most relevant related work is earlier versions of RenderMan,
interactive rendering in movie production, and high-quality final-
frame production rendering on CPUs and GPUs.

2.1. Earlier Versions of RenderMan

The first version of RenderMan was based on the Reyes algorithm
[CCC87]. It was used to render the first CG animated feature film,
Pixar’s Toy Story, and hundreds of other movies — both animated
movies and visual effects for live-action movies. More informa-
tion about the origins of RenderMan can be found in e.g. the books
by Upstill [Ups90] and Apodaca and Gritz [AG00]. We later aug-
mented the Reyes algorithm with multithreading, ray-traced shad-
ows and reflections, global illumination, level-of-detail tessellation,
subsurface scattering, fast point-based approximations, and many
other improvements [CFLB06; Chr08].

RenderMan RIS [CFS*18] was a partial rewrite of the renderer,
where the front-end was switched from the Reyes architecture to
ray casting, making it a full path tracer. Most of the low-level ray-
tracing, tessellation and texturing code was carried over from the
ray-tracing extensions to Reyes that we had introduced over the
years. Fully embracing path tracing enabled better progressive and

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Christensen, Fong, Kilpatrick, et al. / RenderMan XPU 3 of 17

interactive rendering and higher efficiency on computers with many
CPU cores.

2.2. Interactive Rendering

Pixar’s Lpics [PVL*05] and ILM’s Lightspeed [RKS*07] interac-
tive relighting tools were designed to make light placement and ad-
justments more efficient. With Lpics, deep framebuffers were gen-
erated using RenderMan, containing the position, normal, surface
color, etc. of the geometry in each pixel. Then (hand-written) sim-
plified light shaders were run on a GPU for each light source that
changed position or parameters. Due to the image-space frame-
buffer, Lpics was restricted to static scenes. The Lightspeed sys-
tem was more general; it handled transparency, motion blur, depth
of field, subsurface scattering, and indirect illumination (by pre-
computed links with weights between pixels). Lightspeed had au-
tomatic shader translation from RSL to Cg for GPU execution, thus
avoiding a manual shader translation step. However, the automatic
translator had to be updated when the RSL language was modified.
Both tools eventually fell out of use because simplified shaders got
out of sync with their full counterparts, and because the images they
rendered were not predictive of the final render. In practical use, it
is more convenient to have a single renderer for both previews and
final frames, and a single set of shaders to maintain.

For the last 12+ years, Pixar’s internal real-time shading tool
Flow and its GPU viewport renderer RTP (Real-Time Previewer)
[Nah13] have been extensively used by shading TDs (technical di-
rectors) on Pixar productions. RTP runs purely on GPUs and uses
Nvidia’s OptiX library [PBD*10] for all ray tracing. RTP is very
fast and interactive. It supports CUDA-based shading, requiring
separately maintained shaders and bxdfs. The user can change the
viewpoint, illumination, bxdf parameters, textures, and shader net-
works. We have incorporated some RTP code and ideas into Ren-
derMan XPU. The most recent iteration of Flow has RenderMan
XPU as its default renderer, with RTP still available. It is our intent
that XPU will eventually completely supplant RTP. Using Render-
Man XPU for both interactive previews and final frames ensures
consistency and no surprises.

2.3. CPU and GPU Production Rendering

MoonRay [LGXT17] is DreamWorks’ vectorized CPU produc-
tion renderer. It uses Intel’s Embree library [WWB*14] for tracing
rays, providing good SIMD utilization for single rays, ray packets,
and ray streams. They also vectorize shaders and shading, texture
lookups, and the integrator using Intel SIMD instructions. With 8-
wide SIMD instructions, they got an average 1.3–2.3× speedup in
overall rendering time for typical frames. Our system targets simi-
lar SIMD utilization on CPUs.

Early work on rendering on both CPUs and GPUs includes
Nvidia’s Gelato renderer [WGER05], which used a Reyes rasteriza-
tion approach on the GPU and multiple rendering passes for motion
blur and depth of field.

Weta’s PantaRay [PFAH10] used GPUs to precompute ambient
occlusion in complex production scenes. The results could then
be efficiently convolved with environment maps for quick image-
based lighting and relighting.

Several commercial production renderers have a GPU version,
for example Arnold [GIF*18], V-ray, and Redshift. Similarly, Weta
Digital have an in-house CPU renderer, Manuka [FHL*18], and a
separate GPU renderer, Gazebo, and Disney have their in-house
renderer, Hyperion [BAC*18], and a separate GPU pre-viz ren-
derer. Those are separate pieces of software, and the GPU renderers
do not have the full feature set of the original CPU renderers.

Nvidia’s Iray renderer [KWR*17], Sony’s Spear renderer
[SHE*24], and the Karma XPU renderer from SideFX [Sid25] have
many architectural similarities with RenderMan XPU. Iray shares
our philosophy of writing kernel code abstracted in a hardware-
agnostic way and sharing it as much as possible between CPUs
and GPUs. Many implementation choices in Spear — like selective
just-in-time OSL compilation and string hashing — are the same as
ours. Among the differences are that Spear ended up using mega-
kernels (with “micro-jittering” for better execution coherence), and
that Spear is not designed to run on CPUs and GPUs simulta-
neously. Like RenderMan XPU, Karma XPU can render on both
CPUs and GPUs; however, Karma XPU is described not as a re-
placement for the Karma CPU renderer, but as a high-performance
alternative with a limited feature set.

We highly recommend reading the excellent Spear paper to com-
pare and contrast with our approach. We also recommend reading
the latest version of the PBRT book [PJH23], which has an in-depth
chapter about the porting of PBRT to a GPU wavefront path tracer
(similar to our choice of wavefront over megakernel). PBRT ob-
tained speedups from 8× to 37× for GPU vs CPU rendering of a
representative scene, depending on the chosen hardware.

3. Architecture and Design Principles

The key abilities that guided our design are: high-performance ren-
dering on heterogeneous hardware, a modular architecture for flex-
ibility and scalability, and advanced rendering features for high-
quality images. In this section we describe our design goals in more
detail, and present the architecture we created in order to meet those
goals.

3.1. Design Goals

The design goals for XPU are different from RIS. Our design deci-
sions were guided at the outset by the goal of fast parallel execution
on both CPUs and GPUs, allowing the same renderer to produce
equivalent results on existing CPU-based render farms, with the
ability to easily swap in GPUs to accelerate rendering for interac-
tive or offline renders when appropriate. The focus on data-parallel
design is pervasive throughout XPU, and it is largely responsible
for the improved CPU performance we see with XPU compared to
RIS, combined with hardware-specific tuning of the work sched-
uler. Optimized stream compaction and sorting for more coherent
data accesses, parallel execution over wavefront kernels, and effec-
tively non-divergent vectorized operations (SIMD or SIMT) are all
important considerations in order to obtain high performance on
CPU or GPU hardware platforms.

Equally important top-level goals are memory efficiency, op-
timizing time-to-first-decision, interactivity, and an emphasis on

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



4 of 17 Christensen, Fong, Kilpatrick, et al. / RenderMan XPU

artist-focused design. We mention a few aspects of each of these
high-level design goals here.

Memory efficiency is a primary design goal to ensure that pro-
duction scenes can be rendered within the more limited memory re-
sources of GPUs. The already compact data structures in RIS were
streamlined and compressed further for XPU so that both CPU and
GPU renders scale up to the memory requirements of production
scenes. We also perform some of the scene load and startup work
on the CPU (in parallel), and only transfer the final compressed data
structures to GPU memory for rendering. As part of this process,
any complex data structures are converted into more GPU-friendly
array-based data layouts. This approach often results in the GPU
portion of the rendering work requiring significantly less overall
GPU memory, compared to the overall total CPU system memory
used by a CPU-only render.

Time-to-first-decision is a metric that measures how quickly an
artist is able to make meaningful decisions impacting the lighting,
materials, or other aspects of their work. Whereas RenderMan his-
torically has prioritized speed and memory usage of overall final
frame rendering, with startup time more of a secondary goal, for
XPU we designed the renderer also to optimize the startup and load
time. In practice, this meant choosing variable bit-rate compression
algorithms for data structures, compressing spatially coherent sec-
tions of the data in parallel at load-time, and ensuring that we make
use of asynchronous data transfers of the compressed data struc-
tures from CPU to GPU. This allows for concurrent startup-time
processing while the data is streamed into GPU memory for ren-
dering on the GPU. Other aspects of load and start-up time in XPU
are better optimized, parallelized and generally streamlined com-
pared to RIS.

Finally, XPU is designed from the outset for interactivity with a
focus on improving the artist experience. This means that the time
it takes to respond to scene edits (e.g., time-to-decision), updating
progressive refinement of renders efficiently, choosing an appropri-
ate batch size when performing interactive renders, integration of
high-quality interactive denoising, and other aspects that impact the
user experience are all very important.

3.2. Wavefront Path Tracing

XPU uses a wavefront-based design based on tracing a “wave” of
rays over the scene [LKA13; PJH23], as opposed to a design based
on megakernels (where individual ray paths are processed in iso-
lation). In our performance testing, we found that working with
packets of rays allows for many significant performance advan-
tages compared to megakernels: better use of cache hierarchies;
improved load balancing across parallel work units; the ability to
sort rays for spatial and directional coherency; and sorting ray hits
by material properties for shading coherency. The improved co-
herency from sorting pays dividends in several areas, including im-
proved texture cache access, reduced SIMD/SIMT divergence, and
more opportunities for vectorization. Given our focus on optimiz-
ing heterogenous workloads, these improvements are realized on
both CPU and GPU hardware architectures. While Shader Execu-
tion Reordering (SER) permits some limited coherency on Nvidia
hardware, the architecture of RenderMan XPU is designed to ex-
ploit a high degree of coherency on any hardware, CPU or GPU,

and thus wavefront path tracing is an important aspect of the archi-
tecture.

The unidirectional path tracing integrator in XPU works in stages
over the packets of rays. First, we initialize the framebuffers and
camera rays. Next we perform a loop over the ray depth: for each
depth, we trace the rays (either initial camera rays or the next indi-
rect bounce of rays). We consider the emission and direct illumina-
tion at all shading points, which involves shader evaluation, and
performing multiple importance sampling (MIS) between bxdfs
and lights. We make use of queues to buffer work between ker-
nels, including a shadow queue for deferring work over the shadow
rays. Colors are written into the framebuffer after the shadow trace
kernel. Partially or fully transparent geometry adds more complex-
ity due to the need to mix shading and tracing. Our approach uses
an upfront determination of a set of material hints that indicate
whether geometry is trivially opaque, or requires shading to deter-
mine transparency or homogeneous volumetric extinction. When
tracing path or shadow rays, any hits on nearest geometry not triv-
ially opaque are temporarily retained in an additional buffer. Once
all rays have been fired, these retained hits are shaded to calculate
transmittance. For path rays, the transmittance is used to stochasti-
cally terminate the ray; for shadow rays, the transmittance is mul-
tiplied into the shadowing term. In either case, the renderer next
looks for more non-opaque geometry and we restart the process by
shooting continuation rays. Figure 2 shows a diagram of the path
tracing kernels.

Trace 
Rays

Direct
Lighting

Subsurface
Scattering

Indirect
Lighting

Trace 
Shadow Rays

Generate
Shadow Rays

Generate
Camera Rays

Emission

Splat to
Framebuffer

Shade Opacity
& Volumes

Shade
Transparent Hits

Shade
Hits

Figure 2: Kernels in RenderMan XPU

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Christensen, Fong, Kilpatrick, et al. / RenderMan XPU 5 of 17

3.3. Vectorization

We organize data into data-parallel GPU-friendly data structures
and compile the code with both the Intel C++ compiler (SIMD)
and Nvidia CUDA compiler (SIMT) to vectorize the code. We’ve
worked with engineers at Intel to best take advantage of a mix of
the auto-vectorizer and explicit OpenMP SIMD pragma directives
with their compiler, ultimately optimizing both OSL and various
kernels for up to 16-wide SIMD (AVX512). The Nvidia compiler
produces SIMT code which we profile to evaluate performance and
look for divergent code paths. We make use of templating to ensure
a single code path that the auto-vectorizer is able to exploit for vec-
torization, and in several cases, we break up code paths that were
divergent (thus defeating SIMT on the GPU or the auto-vectorizer
according to the vectorization report), so that we instead perform
the work in multiple passes, where each individual code path is
highly vectorized. In addition, we also do explicit vectorization us-
ing intrinsics in a few places such as the ray tracing kernels.

3.4. Ray Tracing

The bounding volume hierarchy (BVH) in XPU is organized into
two levels: one set of low-level BVHs over each geometry primi-
tive, and a separate top-level BVH over the geometry instances. The
multi-level BVH permits fast scene edits, because when the geom-
etry of one or a few primitives is modified, only their local BVH
needs updating, and then the relatively small top-level BVH over
the geometry instances can be quickly rebuilt. Nesting of instances
is supported in XPU, and this works via a separate BVH traver-
sal per level of instancing in order to form an instance path from
the root instances to the leaf instances within the nested instancing
hierarchy.

XPU sorts traced rays by spatial location and direction: the rays
are binned based on ray origin and direction, with the origin bins
taking priority over the directional bins when forming the sort key.
Sorting improves coherency and reduces divergent paths of exe-
cution during ray traversal. For GPU ray-tracing code paths, we
make use of per-geometry traversal kernels, and separate kernels
for motion blur versus non-motion blurred traversal paths, nested
instancing, and for volumes, and each combination thereof. These
code paths permit efficient traversal, in particular on the GPU be-
cause it helps minimize divergent code paths and register usage,
and increases occupancy.

Ray hits are also sorted — by geometry type, pattern network,
and bxdf binding. This sort maximizes the batch size for the ker-
nels comprising shading: primvar interpolation (which differs by
geometry type), and OSL pattern networks. It also maximizes the
efficiency of subsequent bxdf sample generation and evaluation in
the path tracer. Prior to shading, we use stream compaction to group
the ray hits for coherent shading kernel execution, and kernels are
launched in separate streams to maximize available GPU resources.

In production, high numbers of trace subsets are used — between
70 to 80 on average, up to 450 maximum — for selectivity in ray
tracing when it comes to visibility, shadowing, and direct light link-
ing. While in theory trace subsets could be handled by creating sep-
arate root level BVHs, this incurs a significant memory and time
cost because subsets often overlap their membership. While having

one visibility or mask bit per actively used subset would be ideal,
in practice we can still use fewer bits (such as 24 or 32 bits) effec-
tively by mapping multiple subsets to the same bit in the mask, and
then performing a final full filtering only at the leaf level during
BVH traversal. This works well as long as we don’t try to map too
many subsets onto the same bit; in practice, trying to map 450 ac-
tive subsets onto 8 hardware mask bits provides very limited value
for ray culling during traversal, and more hardware mask bits (e.g.
32 bits) would be necessary to alleviate this issue. On the GPU,
the overhead for context switching between RT cores and general-
purpose execution units means that calling custom intersectors to
cull based on subset membership during the inner loop of traver-
sal can significantly impact performance, hence the importance of
direct hardware support for more mask bits.

In the beginning of the XPU project, we implemented both
CUDA and OptiX code paths, and profiled memory usage, BVH
build times, ray traversal times, and other metrics. At that time, al-
though the raw OptiX ray traversal speed was impressive for some
scenes, our CUDA version offered faster BVH build times and
used less memory than OptiX 7. Notable issues included lack of
RT hardware acceleration for motion blur in many cases, limited
hardware visibility mask bits, and only some of the base geometry
types were accelerated by the RT hardware cores. In the most real-
istic production scenarios, this required use of custom intersectors,
which shifted much of the work away from the RT cores. Profiling
and testing also indicated significant overhead for context switch-
ing between the RT core units and execution of custom intersec-
tors, which meant we were unable to realize improved metrics with
OptiX on most Pixar production scenes. We also found look differ-
ences for curves between OptiX and the RT hardware intersectors
compared to our C++ and CUDA versions. Based on this early eval-
uation, we moved forward with the CUDA implementation.

Since then, newer versions of OptiX and RT hardware have
substantially improved BVH build times and memory usage, ray
traversal is faster, shader execution reordering was added, and more
code paths are fully hardware-accelerated, including additional mo-
tion blur acceleration. We are encouraged by the progress and look
forward to re-evaluating the latest versions of OptiX and RT hard-
ware cores.

3.5. Tessellation and Displacement

Subdivision surfaces [CC78] and polygon meshes are the most im-
portant input geometry types in modern rendering. Our approach
in XPU is to completely tessellate subdivision surfaces to micro-
polygons as early as possible in the rendering pipeline. Along sim-
ilar lines, large polygons that have displacement are also handled
by tessellating into smaller micropolygons, running displacement,
and retaining only the displaced result. This way, XPU can focus on
optimized (micro)polygon handling. As a consequence of this ap-
proach, all tessellation and displacement is completed before any
rays are traced into the scene.

The transformation from high-level meshes to micropolygons
occurs in multiple stages. The transformation in each stage is ir-
reversible, a decision made to optimize memory since we do not
need to keep around multiple representations of the geometry in

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



6 of 17 Christensen, Fong, Kilpatrick, et al. / RenderMan XPU

order to repeat a transformation in the future. A downside of this
approach is that when a geometry primitive edit is made, almost the
entire pipeline and all of its transformation stages needs to be fully
re-executed (but only for that primitive; only instances of this one
primitive need to be updated in the global BVH). While this de-
lays the time to first pixel compared to a rendering architecture that
lazily tessellates geometry, it allows the renderer to compute opti-
mal GPU-friendly representations for the data, as well as bounding
volume hierarchies over large meshes. We also do not incur this
pipeline cost on other common types of edits, such as transforma-
tion or material changes.

Currently all tessellation and displacement is done on the CPU
since we have not yet implemented a task manager to efficiently
distribute these tasks to both CPUs and GPUs.

3.6. Light Transport

Light transport is simulated with an integrator that implements
a unidirectional Monte Carlo path tracing algorithm [Kaj86;
CFS*18; PJH23], iterating over light reflection and refraction
bounces “backwards” from the camera to the light sources. Each
path is terminated when the ray exits the scene, by Russian
roulette [AK90], or when a maximum depth has been reached.
Each material (bxdf) has a sample generation and a sample eval-
uation function. The light sources are sampled explicitly at each
bounce (aka. “next-event estimation”). In scenes with many lights,
a subset of lights is chosen for each shading point in each itera-
tion, and a sample point is stochastically chosen on each of those
lights. The bxdf and light samples are combined with multiple im-
portance sampling (MIS) [VG95]. As an additional noise reduction
technique, we select more light source candidates in each iteration
than we intend to illuminate the surface, compute their illumination
and evaluate their bxdf response, and then pick the best combina-
tion using resampled importance sampling [TCE05]. That combi-
nation then becomes the illumination we push onto the shadow ray
queue.

Subsurface scattering (sss) is an interesting wrinkle in our wave-
front approach as seen in Figure 2. We compute direct illumination
at all the original hit points, and then select which points should
have subsurface scattering in that iteration (based on the relative
weights of subsurface scattering vs. other lobes). At each point with
subsurface scattering, we compute a new shading point by tracing
sss rays; at those new shading points we update the path throughput
and compute the (diffuse) direct illumination there. Now we have
a mix of non-sss points with their original position and sss ray hit
points with updated positions. We can then continue with the next
bounce of indirect illumination from those mixed positions.

Modern versions of RenderMan are physically based at heart,
but there are many ways to manipulate the light transport in non-
physical ways — all in the interest of art directability and creativity.
XPU supports plug-in light filters bound to light sources that can be
used to arbitrarily modify direct lighting contributions. Light and
shadow linking may indicate that lights should only illuminate or
be shadowed by some of the objects in the scene. Trace visibil-
ity can be used to make objects invisible to the camera, to reflec-
tion/refraction rays, or to shadow rays. Trace subsets can be used

for more fine-grained visibility controls, like making only certain
other objects visible in the reflection from some object.

XPU also has simpler integrators for fast visualization of object
shapes and shading, for example showing surface patches, surface
normals, textures, or ambient occlusion. Figure 3 shows Woody’s
head rendered to visualize the subdivision mesh, and rendered with
full path tracing and subsurface scattering. RenderMan XPU also
supports non-photorealistic styles such as pen-and-ink, charcoal,
cross-hatching, contour lines, and many more.

Figure 3: Woody’s head rendered with two different integrators.
©Disney/Pixar.

3.7. Virtual Device Architecture

We handle task management on heterogeneous devices using a vir-
tual device architecture. This allows us to abstract away implemen-
tation details such as work sizes and context management to the
devices on which the execution happens.

A central part of this abstraction is the usage of a scheduler that
determines the amount of work (pixel integration) sent to the de-
vices. The GPU, being a large parallel machine, can only work effi-
ciently when its working set is very large. In XPU, the GPU work-
ing set is 500k elements, whereas the per CPU thread working set
size is 1024 elements (32×32 pixels). This maximum size was cho-
sen empirically since the amount of state required to maintain for
each working element grows almost linearly (dependent on AOV
count, etc.), the limiting factor being the GPU memory capacity.
In XPU, the pixels to be integrated are coalesced into buckets that
span a rectangular region of the screen. This was deliberately cho-
sen to improve the primary ray coherence (ray traversal and shad-
ing), which can have a huge impact on render times. However, as
the number of bounces increases, the amount of extractable coher-
ence decreases. In the core render loop, there are very few points
of synchronization between the devices. The virtual devices (and
their respective worker threads) operate independently. One of the
synchronization points is framebuffer accumulation and we employ
per-bucket locks to make sure different parts of the screen can be
accumulated independently of one another.

4. Key Features and Advanced Capabilities

4.1. Surfaces, Curves, Points, and Volumes

The geometry representation in XPU is split between geometry
primitives (“prototypes”), and instances of those prototypes. “Prim-

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Christensen, Fong, Kilpatrick, et al. / RenderMan XPU 7 of 17

itive variables”, or primvars, include vertex positions, normals, and
any other input data used for shader variation over the surface; they
represent the bulk of the input geometry data and are bound to the
prototypes. Materials and a small amount of per-instance override
data are bound to instances.

Geometry prototypes and instances are processed in separate
pipelines prior to any ray tracing. As shown in Figure 4, various
stages of the pipeline are executed depending on actions performed
by the user, and are run in parallel on different prototypes or in-
stances. For instances, an important stage is creating a unique ma-
terial binding across all instances of a prototype. The binding con-
tains a mapping from primvar names requested by the shader to
integer primvar offsets in the geometry prototype. The mapping
avoids string processing of primvar names during shader execution,
as the offset can be used directly by the primvar interpolation ker-
nels prior to shading. The bindings can be quickly regenerated for
any edits to the materials themselves; because we retain all prim-
vars in the geometry, any other existing material bindings are unaf-
fected because their offsets do not change. These mappings allow
us to achieve a key goal: the ability to quickly edit materials on
geometry without having to re-execute the geometry pipeline.

Geometry primitives in XPU are represented by surfaces, curves,
points, and volumes. We will now describe these and their process-
ing pipeline.

Quad/Tri &
Convex 

Cleanup

Tessellate

Package

Create BVH

Create 
Material 
Binding

Upload 
Geometry Data

& BVH

Displace
Modify

Displacement

Create/Modify
Points or Curves

Create/Modify
Subdivision Surface

Modify
Material

Upload 
Material 
Binding

Create/Modify
Geometry
Instance

Create 
Geometry
Instance

Upload 
Geometry
Instance

Dashed line represents data dependency

Figure 4: XPU Geometry Processing Pipeline

4.1.1. Surfaces

For surfaces, XPU supports subdivision surfaces and polygon
meshes; we have chosen not to support NURBS, bicubic patches,
and quadrics, but in the future we could support these via tessella-
tion to polygon meshes.

XPU devotes much effort to processing subdivision surfaces,

from high-level geometry to final ray-tracing ready micropolygons.
This occurs over multiple discrete stages. The first stages include
processing to ensure that any incoming data is well formed: holes
in faces are eliminated, concave faces are converted to convex, and
any faces with five or more sides are converted into quads and
triangles. Any bad floating point data (from e.g. degenerate input
polygons or NaN particle simulation data) is filtered at this stage.
Other data filtering may occur here; in particular, deformation mo-
tion blur (motion blur described by movement of individual vertices
through time) is supported compactly by retaining only multiple
values of the vertex positions, with shared topology. XPU does not
support deformation motion blur of arbitrary primvars, as this situ-
ation rarely occurs in production rendering. Therefore, if there are
values of primvars (other than positions) that change in time, we
only keep the values from the first time step.

The first significant transformation phase is tessellation, where
subdivision surfaces or large displaced polygonal faces are turned
into a set of smaller micropolygons. Note that XPU does not use
a multi-resolution geometry cache [CFLB06]. In recent years, we
have found many overmodeled assets from production, with each
subdivision face smaller than a pixel and requiring tessellation only
to a few micropolygons. Hence, it is generally more efficient to
commit to an irreversible transformation of the subdivision mesh
to a fully tessellated polygonal representation. Even with additional
storage for the limit surface analytic tangent vectors and normals,
with compression this is more efficient in memory than retaining a
subdivision mesh boundary representation that allows for arbitrary
re-tessellation. For subdivision surfaces, we leverage OpenSubdiv
[Pix23] to compute the limit surface quantities of the position data
as well as all primvars.

The target size for tessellation is determined by a number of user
selectable factors, with the default strategy being to compute micro-
polygons whose dimensions satisfy a projected screen size, mea-
sured in pixels. Many scenes contain large amounts of off-screen
geometry. In order to reduce memory consumption when such ge-
ometry is close to the camera’s near clipping plane, we aggressively
under-tessellate such geometry if possible, especially if it is not
over-modeled in the first place. This may lead to artifacts if the
off-screen geometry is reflected back into camera view, but in prac-
tice objectionable artifacts are rare and the under-tessellation can
be dialed back on a case-by-case basis. In cases where temporal
stability of tessellation is necessary (especially when objects move
in and out of camera), we have a user setting to determine the rate
using a spherical instead of a planar projection; this is both robust
and reasonably memory efficient.

It is important in production rendering to avoid artifacts that may
be incurred by tessellation. Watertightness of tessellated meshes
avoids pinholes in the alpha channel and errors tracking nested
dielectrics. In order to avoid T-junctions on geometry caused by
dicing parametric patches into rectangular collections of micro-
polygons, we use a variant of the DiagSplit algorithm [FFB*09].

The next significant transformation is displacement, which uses
OSL pattern networks to compute a new displaced position for ev-
ery vertex on the tessellated mesh. As inputs to the pattern network
may depend on data that varies even on a single shared vertex (e.g.,
the face normals on a cube are different on the vertices of the adja-

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



8 of 17 Christensen, Fong, Kilpatrick, et al. / RenderMan XPU

cent shared edges), an extra averaging step is required to ensure that
no cracks occur in the displaced results, and that the final mesh is
stable through animation. As a nod to the importance of interactive
editing of displacement, we retain the undisplaced vertex positions
and normals even after displacement, which allows us to rerun the
displacement upon shader edit without having to rerun the tessella-
tion stage.

The next transformation is a packaging stage, which uses mul-
tiple techniques to compact the geometry data into a compact, ef-
ficient form. After packaging, the data is considered read-only and
ready to be uploaded from host to device. Several compression
techniques are used, which tend to favor speed of compression over
high compression ratios. Buffers containing floating point primvar
data are sorted and duplicate values removed. The sorted floating
point data requires the use of integer indirection indices to look up
the data during ray tracing; these indices are converted into off-
sets, which simplifies encoding using variable bit depths. Our en-
coder achieves compression ratios of 3-5×, but comes at moderate
runtime compute cost: random access requires around 24 instruc-
tions and 3 memory reads. Normals are compressed into 4 bytes
using octahedral mapping [CDE*14]. All buffers, including both
the floating point data buffers and the variable bit-encoded index
buffers, are globally deduplicated.

Figure 5 shows an occlusion render of the train station set from
Pixar’s Coco. This scene is highly detailed: the 53,874 subdivi-
sion meshes and 2,251 polygon meshes in the instance prototype
definitions tessellate to 72.4 million micropolygons. Without pack-
aging, the uncompressed geometry data for this scene would re-
quire 21.2 GB of memory. With compression and deduplication,
the required memory shrinks to 6.2 GB. Even with the additional
overhead of BVHs and other buffers, this scene fits well within the
memory of a 16 GB GPU.

Figure 5: Train station from the movie Coco. ©Disney/Pixar.

The final stage for the geometry processing is building a per-
primitive BVH. The internal nodes of the polymesh BVH follow
that of the main BVH, except that we specialize the representation
of the internal nodes based on the number of vertices in the poly-
mesh. The indices to the primitives stored within the BVH node
use the smallest possible bit depth. For meshes with upwards of a
million vertices, we quantize the bounding box offsets using 1 byte
float per dimension in order to save a considerable amount of mem-
ory, trading off some compute expense. The BVHs built for use on
the CPU and the GPU are identical.

4.1.2. Curves and Points

Objects like fur, hair, and grass are represented by a curves ge-
ometry primitive. Key to this primitive is the assumption that each
individual curve has no variation in primvar values across its width
— the only useful parameterization is over the length of the curve.

Curves are represented as collections of linear or cubic segments
with per-vertex widths. If optional normals are supplied, the curves
are treated as oriented flat ribbons (like grass blades); otherwise,
they are treated as round cylinders. In XPU, we have chosen not to
tessellate curves into micropolygons; instead, we trace rays directly
against the linear or cubic splines [NO02]. This is somewhat at odds
with our previous observation that production geometry tends to
be overmodeled; it is often the case that short fur is modeled with
tens of control points packed into strands shorter than a few pixels.
However, we have also observed that hair can run to the opposite
extreme: long flowing tresses can be efficiently represented with
just a few cubic control points rather than many small tessellated
micropolygons. For now, we have chosen to focus on optimizing
an untessellated curves geometry representation in XPU.

Since we support neither tessellation nor displacement of curves,
the only significant transformation stages in its pipeline are the
packaging and BVH build stages. The compression techniques in
the packaging stage follow that of the polymesh primitive, with
one additional step: for curves using the Bézier basis, we compress
four control points into the space of three by converting the two
middle control points into tangent vectors and encoding them in
half precision.

Because curves are not tessellated into smaller, approximately
square micropolygons, the BVH for a curves primitive can be more
complicated than for a polymesh in order to achieve acceptable per-
formance. We also recognize that a curves primitive may contain
thousands or even millions of individual strands. To balance these
competing goals, the curves BVH uses a non-axis aligned, object
oriented bounding box similar to Woop et al. [WBW*14], but with
a SIMD-friendly quantized quaternion encoding: each child’s ori-
entation relative to the axis aligned bounding box is encoded in a
quaternion quantized to 8 bits. The bound offsets are also quan-
tized to a single byte per dimension. Figure 6 shows Dorothea from
Pixar’s Soul. All curves (including her hair, peach fuzz, and gar-
ments) were rendered with the Chiang hair bxdf [CBTB16]. Her
hair has 29,297 individual strands with an average of 150.6 ver-
tices per strand. The BVH built for just her hair rendered by itself
at 1024×1024 pixel resolution has 2,078,260 nodes; using full pre-
cision BVH nodes would require 437 MB, whereas the compact
quantized representation only uses 246 MB.

Particle effects are rendered using a dedicated points primitive,
which efficiently scales to millions or even billions of individual
points. Each point is represented by a position and a radius rep-
resenting a sphere, along with any per-point primvars. We assume
there is no variation of primvars on the spheres and that there is no
useful parametric space for shading on the surface. Since no tessel-
lation or displacement occurs, the package and BVH build stages
are the only significant steps. The package stage follows that of
polymeshes. For large numbers of points (currently over a million),
we create a BVH whose nodes contain 8-bit quantized bounding

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Christensen, Fong, Kilpatrick, et al. / RenderMan XPU 9 of 17

Figure 6: Dorothea from Soul. ©Disney/Pixar.

boxes. The ray tracing intersector for points is a simple ray versus
sphere test.

4.1.3. Volumes

Homogeneous volumetric effects that can be considered part of a
material’s light scattering are handled as relatively trivial special
cases by the ray tracing kernels. Heterogeneous volumetric effects
such as smoke, fire and clouds require further handling. Volume
primitives modeling these effects are described using a bounding
box and an optional associated filename. In production, volumet-
ric fields are generally written to disk in an independent file for-
mat. For XPU, we have chosen to support only the OpenVDB for-
mat [Mus13], due to its ubiquitousness in industry and because we
can take advantage of NanoVDB [Mus21] to efficiently interpolate
data on both CPUs and GPUs. For each volume primitive, the main
transformation stage is where the OpenVDB file is read from disk
and converted to NanoVDB representation before being uploaded
to the device.

Ray tracing of heterogeneous volumes departs from the handling
of other primitives described in section 3.4. Modern volume render-
ing techniques rely heavily on Delta tracking methods [WMHL65]
and derived variants such as residual ratio tracking [NSJ14]. As de-
scribed in Fong et al. [FHWK17], we have found it more efficient
to use a BVH fully aware of volume metadata used by tracking
methods, in particular the extrema of the extinction coefficient. We
use the aggregate volumes method, which creates an octree over all
volume primitives, with each node containing metadata. The im-
plementation in XPU follows that of RenderMan RIS, incorporat-
ing recent developments and extensions: we assume the filter width
is always zero, eliminating any dynamic updates of the octree dur-
ing ray tracing, and we extend the octree to handle transformation
motion blur and visibility [Fon23].

After all volume primitives have been supplied to the scene, a
separate pre-rendering stage is scheduled where the aggregate oc-
tree is built over all volumes. If the extinction is derived solely
from the VDB file, we can compute the extrema directly from
NanoVDB; in other cases where shading contributes to the ex-
tinction, we shade the volumes at voxels created at a user-defined

frequency on both the CPU and GPU. The completed octree is
uploaded to the device in a pointer-less, index-only representa-
tion, and remains static for the duration of the render. Each octree
node contains extinction metadata over all volumes overlapping the
bounding box plus an integer count and an integer offset into the list
of volume primitives.

During ray tracing, the aggregate volume BVH is considered af-
ter all other geometry primitives have been traced. Rays traversing
the octree nodes will pause in a node when tracking requires test-
ing for interaction with volumes. Every volume listed in that node
will require OSL shading to compute density, which also requires
interpolation of inputs via NanoVDB. The density of all volumes is
summed and used to decide whether the stop is a real interaction or
a fictitious one to be ignored. Once tracking has been completed,
and an interaction with the aggregate volume has been returned to
the path tracer as a ray hit, the volume is treated as any other primi-
tive in the system, with the only extra considerations being that the
primvar interpolation will involve NanoVDB, and the bxdf will in-
volve a phase function such as a double-lobed Henyey-Greenstein.

4.2. Programmable Shading with OSL

One cornerstone of a feature-film production renderer that provides
the ability to be used across visual effects and animation is flexibil-
ity. One of the ways XPU provides this flexibility is through pro-
grammable shading. Based on the widespread use of Open Shading
Language [GSKC10] in feature animation at Pixar, it was a logical
candidate for supporting that programmability in XPU.

4.2.1. OSL everywhere

OSL uses a just-in-time (JIT) compilation strategy for shading net-
works that is built on top of the LLVM [LA04] compiler frame-
work. Fortunately, LLVM has back-ends that can target both CPUs
and GPUs, and OSL has been extended to support both of these
back-ends, allowing authors to write the programmable shaders
once in OSL, which then run in both places via the run-time com-
pile. This helps XPU meet its goal of having the CPU and the GPU
produce equivalent pixels, as both are running the same original
code. While RIS supports both C++ and OSL for material pattern
shading networks, XPU solely supports OSL patterns, and also ex-
tends support beyond RIS to sample and display filters. Going for-
ward, XPU will continue to broaden the places that can be con-
trolled with programmable shading via OSL, such as in driving the
camera model, non-physical light and shadow filtering, etc.

4.2.2. Strings

Optimizing for specific data types such as strings can be important
for rendering performance on the GPU. Strings are widely used for
texture file names, names for settings, use of LPEs, access to AOVs,
etc. Because we support only assignment and comparison of strings
during ray traversal and shading, we can compare either pointers to
the strings or hashes of the string values, rather than performing
full string comparisons.

We typically choose to use a hash of the string contents. Because
hashes do not change from run to run (unlike pointers), we can re-
use previously cached JIT-ed and compiled code in many cases by

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



10 of 17 Christensen, Fong, Kilpatrick, et al. / RenderMan XPU

using hashes. This ultimately yields a higher driver cache hit rate;
see Stein et al. [SHE*24] for more details. We observed numerous
collisions with 32-bit hashes and thus we extended this to 63-bit
hashes with one additional bit reserved for a collision management
scheme. We detect hash collisions and set the bit to 1 to indicate
no collisions of the hash value, in which case the hash is used.
However, when we detect a collision, this bit is set to 0, and then we
resolve the collision by using a pointer to the string itself instead
of the hash. Because the pointer is guaranteed to be unique, we’ll
always generate a correct picture. Thus, while a collision will result
in an occasional driver cache miss, it will not produce incorrect
results.

4.2.3. Optimizations for Interactive Look-Dev

One of the first deployments of XPU was for the internal look-
development tool Flow. Flow is specialized for editing OSL shader
networks, and initially could switch between RTP for fast preview
and RenderMan RIS for final quality rendering. A benefit of intro-
ducing XPU was that it can directly use OSL for rendering instead
of RTP’s set of corresponding CUDA shaders. However, we soon
ran into a drawback of this approach with interactive parameter
editing. OSL’s JIT model avoids the cost of unused shader func-
tionality at runtime via dead code elimination and constant folding
of input parameter values. This is great for optimizing final frame
rendering where these values are not changing; however, in an in-
teractive setting, it also means we must conservatively re-compile
the whole shading network any time a parameter is changed or run
the risk of incorrectly optimized shaders. Compounding the prob-
lem, OSL’s batched extension to support SIMD code generation on
the CPU and PTX (via LLVM) on the GPU greatly increase com-
pile time.

We mitigated the compile time cost of every parameter edit by
using an OSL feature that allows late-binding of parameters to ge-
ometric values in a buffer, instead of requiring them to be baked in
during a compile. These buffer values can be easily changed by ed-
its at run-time. Upon receiving a shader edit, the renderer will com-
pare old and new pattern networks to decide whether it can proceed
with a fast parameter-only edit, or requires a full re-compile due to
changes in network topology. As a heuristic to avoid keeping all
parameters live in the buffer and foregoing many optimizations, we
keep only those parameters live that the user has explicitly set; all
other inputs still at their default are compiled in, but will trigger a
re-compile on first edit. This brought much needed interactivity into
many edits and greatly improved the usability for interactive look-
dev, particularly for the CPU. However, more work was needed on
the GPU. Our GPU texturing system requires handles to textures
that are constant at shader-compile time, and as previously men-
tioned, we only support limited operations on strings. Our shading
relies on compile-time optimizations to transform dynamic manip-
ulations of strings, used for flexibility and artist convenience, into
constant run-time results. These optimizations are at odds with the
need to keep things live for fast interaction, and complicated by
the fact that any parameter could influence the compile time reso-
lution of strings or texture handles; for example, a float parameter
could be tested against a threshold to select between two texture
filenames. In order to know which parameters are safe to keep ed-
itable, we added a dependency analysis pass to OSL to discover

any parameters required to be constant in order for all strings and
texture handles to be resolved to constants at compile time. This in-
formation is used to override requests by the renderer to keep those
parameters live, as well as to maintain them as constant so that a
re-compile will be required when they are edited.

These changes allowed for many shading edits on heavy assets
to proceed in milliseconds instead of tens of seconds. With XPU,
interactive editing has changed from clicking on a color and waiting
for it to update to see what happened, to being able to interactively
drag a slider during shader look development, getting us to the point
where XPU can be used for similar use cases as RTP.

4.2.4. Closures

Closures are a way of communicating information from the OSL
shader to the renderer about an implementation that needs to be
made. For example, bxdf closures ask the renderer to provide some
form of evaluation of the material. So-called “debug” closures are
a way to pass a float/color value back to the renderer to write to the
pixel buffer. Any closure defined by the renderer must be registered
with the OSL shading system and must have id ≥ 0. (Id -1 and
-2 are reserved for closure multiplication and addition, so that the
shader writer can do simple combinations of closures.)

Closure pool allocation happens once during scene ingestion and
expands in case there is not enough memory during rendering. We
let closures pile up compactly in the pool of memory. Every shad-
ing point gets to store its list of closures in the order they are ac-
cessed. The count of closures per shading point is stored so that
later when we need to process this tree of closures, we know ex-
actly how many nodes will need to be unrolled into a stack (since
recursively unrolling a tree on the GPU is not feasible).

We store an atomic counter to point to the back of the already
initialized memory pool. During shader execution, we expect the
memory pool to be filled about halfway. When closures need to
be processed (to either place pixel values into input AOVs or to
evaluate a material), and all the closures from the shader have been
assigned a location, the renderer will unroll the closure tree that
has formed. If the closure pool runs out of space to either allocate
memory for a closure at shader execution time or while allocating
space for stack traversal of the closure tree per shading point, we
notify the renderer via status flags that we need to double the size
of the entire closure memory pool and re-run the shader execution
for that shader.

4.3. Materials (Bxdfs)

As mentioned in section 3.6, each bxdf is represented by a sam-
ple generate and sample evaluate function that can be called by the
renderer. The bxdf functions are written as kernels that can be com-
piled for and executed on CPUs or GPUs.

4.3.1. Monolithic Bxdfs

There are ten stand-alone bxdfs inherited from RenderMan RIS:
PxrConstant, PxrDiffuse, PxrDisney, PxrSurface, etc. PxrSurface
is a very complex bxdf with several diffuse models, two specu-
lar lobes, multiple subsurface scattering types, fuzz, iridescence,

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Christensen, Fong, Kilpatrick, et al. / RenderMan XPU 11 of 17

glossy refraction, and more; in all, it has 10 lobes and 127 input
variables. It has been used for many years at Pixar to represent all
material types. Its main limitation is that the layering of the lobes
is fixed; for example, fuzz is always on top of diffuse and specular.
All the XPU bxdfs have the exact same parameters as in RIS.

4.3.2. MaterialX Lama and MaterialX PBS Nodes

ILM’s original implementation of Lama shaders [Pix21] was writ-
ten in C++ solely for execution on CPUs. We ported the Lama
shaders to the XPU framework. This was facilitated by being able
to re-use the same header files, classes for scattering distribu-
tion functions, etc., so we only had to write a thin layer of sam-
ple/evaluate functions on top. One problem we ran into is that Lama
has several precomputed tables for microfacet multiscatter energy
compensation [Tur17], and those tables were so large that they
caused the CUDA compiler to grind to a halt. Fortunately, we were
able to reduce the size of the tables — combined with selective
remapping of the parameters — without any visible differences.

MaterialX [SS16] is the next generation of shared materials; it
is open-source with contributions from many studios and intended
to simplify interchange of assets between studios and renderers.
ILM is currently implementing all the MaterialX Physically Based
Shading base nodes in XPU.

4.3.3. Combiner Nodes

The MaterialX shader framework provides combiner nodes for
mixing, adding, and layering base nodes. In RIS, these combiners
are relatively straightforward: they have function pointers to their
child bxdfs, which they call to sample/evaluate, and then combine
the results. However, in XPU, this approach is not feasible due to
the complexity of supporting both CPU and GPU execution.

To overcome this, we leveraged XPU’s OSL closure support to
implement a more flexible, efficient, and general solution. Instead
of directly invoking bxdf functions, we defined built-in material
closures for each material type (e.g., Lama and MaterialX nodes,
and Pixar materials like PxrSurface): at build time, OSL shim nodes
are generated alongside these built-in closures for all supported ma-
terials. The primary role of these shim nodes is to supply the appro-
priate parameters to their corresponding material closures. Then,
during scene ingestion, when materials are instantiated, the shim
nodes are seamlessly integrated into the shading networks. These
OSL shading networks are executed as usual, and the resulting ma-
terial closure DAGs (directed acyclic graphs) are stored in our clo-
sure pool (CPU and/or GPU depending on the device).

Finally, material evaluation and sampling follows two key strate-
gies: for bxdf evaluation, we traverse the DAG of closures, accumu-
lating contributions from each bxdf; for bxdf sampling, traversal is
performed stochastically, selecting a bxdf to determine the outgo-
ing direction. This approach enables efficient and flexible material
evaluation across both CPU and GPU execution paths.

4.4. Texture Caching

The challenge of caching production texture data for rendering
is even more pronounced for GPUs, where memory is more lim-

ited and expensive. We optimized our implementation of out-of-
core texturing for different devices and rendering scenarios. This
involved developing distinct texture caching strategies tailored to
both the hardware architecture and to the specific types of textures
used, such as regular and Ptex textures [BL08]. Our CPU and GPU
texture caches differ in several key aspects:

• Implementation: The CPU texture cache is implemented in stan-
dard C++ and runs entirely on the host. In contrast, the GPU
texture cache is implemented using CUDA device code and ex-
ecutes fully on the GPU, making use of CUDA constructs. This
allows for efficient parallel processing with minimal host inter-
vention.

• Page Replacement Strategy: The CPU cache employs a sim-
ple round-robin algorithm for page replacement, while the GPU
cache utilizes an LRU (Least Recently Used) strategy to enhance
page prediction and improve memory efficiency.

• Data Granularity and Management: The CPU cache operates at
the tile level and supports tiles of varying sizes. In contrast, the
GPU cache subdivides tiles into fixed-size data blocks, referred
to as pages. This distinction is significant because using a fixed
page size simplifies the parallel processing of pages and facili-
tates more efficient page replacement.

• Multi-level Caching Strategy: The GPU cache utilizes a small
additional CPU-side cache to temporarily store tiles for which
some, but not all, pages have been requested. Since the remain-
ing pages of these tiles are likely to be accessed in subsequent
iterations, retaining them in CPU memory helps minimize redun-
dant disk reads — thus reducing latency and improving overall
caching efficiency.

• Performance Advantage: In our experiments with production
scenes, the GPU texture cache demonstrated up to 4× faster per-
formance compared to the CPU texture cache, benefiting from
its parallelized architecture and optimized page management.

The space required to store texture tiles in the cache is cur-
rently allocated upfront; this is an area we are working to op-
timize. However, both texture caches employ lazy allocation for
their internal data structures. For the GPU cache, this is a key ca-
pability and a notable advantage over the approach proposed by
Garanzha et al. [GBPG11], which assumes that the page table and
various LRU buffers fit entirely within device memory. In complex
production environments, the size of these data structures can eas-
ily exceed several gigabytes, making the approach impractical. By
using lazy allocation, we have observed memory reductions of up
to 80%, depending on the scene, significantly improving scalability
without sacrificing performance.

An exception to the system described thus far is that Ptex tex-
tures are managed by the CPU texture cache even during GPU
rendering. In this case, the texture cache state is transferred from
host memory to device memory to ensure the required pages are
available when needed. This behavior arises from the interaction
of two factors: the fixed page size of the GPU cache and the high
variability in tile sizes for Ptex textures. We found that the fixed
page size was inefficient for handling the wide range of tile sizes,
leading to suboptimal performance of the GPU cache — unless the
page size was extremely small. However, using an extremely small
page size resulted in an increase in the internal data structures of
the GPU cache (the page table and LRU buffers), which introduced

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



12 of 17 Christensen, Fong, Kilpatrick, et al. / RenderMan XPU

additional overhead and negated some of the performance benefits.
We also explored using multiple GPU cache instances with differ-
ent page sizes, but this only resulted in marginal performance gains
compared to the simpler, more straightforward CPU cache. This
remains an open area of research, and we continue to explore po-
tential future optimizations.

4.5. Interactive Rendering

In an interactive session, artists frequently update the scene with
quick material edits, camera pans, lighting modifications, etc. The
renderer has to be interrupted on each such edit. The time it takes to
register an interrupt, process the changes, and present new results
to the screen can have a significant impact on the artist’s experi-
ence. Our goal is to reduce the lag as much as possible. However,
the CUDA GPU programming model employs a fork-join program-
ming model and does not allow for a mid-kernel interruption, which
can lead to large unbounded lags hurting the interactive experience.
Hence we adopted a “progressive pixels” mode where, in the be-
ginning, results of constrained work elements are splatted to larger
regions of the frame buffer (up to a maximum of 16×16 pixels), and
as subsequent work items are processed, the splat region sizes are
reduced until we reach a single pixel. Only the CPU is employed in
these first few iterations of rendering, so that interrupts can be regis-
tered and responded to quickly (while the GPU is idle). The work-
ing set size for the CPU is gradually increased (using powers of
two) as the iterations progress and no interrupts are registered. Only
then is the GPU brought in to help process the remaining work. The
rationale behind this design is that as more time progresses between
interrupts, the chances of registering a new interrupt decreases, and
hence we can allow the GPU to start pulling in more work. The
low-resolution samples are chosen from their final high-resolution
sample pixel locations with high-resolution ray differentials in or-
der not to pollute the texture cache with low-resolution MIP-map
levels. We also adopt an update order that recursively applies Bayer
ordered dithering to distribute the newest information in areas dom-
inated by the oldest results, which allows the artist to more quickly
see the important parts of the image.

4.6. Implementation Details

This section is a collection of implementation details we found in-
teresting and believe could be of interest to others. Many other XPU
features are carried over directly from RenderMan RIS and not de-
scribed here.

4.6.1. Floating-point Differences

Like any renderer running on both CPUs and GPUs, we must deal
with slightly inconsistent floating-point results. Some pixel sam-
ples can be different due to a different order of floating-point op-
erations, fused multiply-adds, etc. Most of these differences only
show up in the least-significant bits of the floating-point values,
and are not visible at all. But sometimes a tiny float difference can
cause different lobe selection (e.g. reflection instead of refraction),
or a different termination choice in Russian roulette — in that case,
the pixel sample will have a visibly different color. In practice, a
few pixels can differ visibly if “the same” image is rendered mul-
tiple times in CPU+GPU mode, but these differences are lost in

the noise and disappear with sufficient samples. We take a prag-
matic approach to this: both images are equally “correct”, just dif-
ferent, and converge to the same result. For the image in Figure 1,
the root-mean-square difference between a CPU-only and a GPU-
only image is 0.27% and the structured similarity index (ssim) is
99.9978. We are used to such differences from our CPU-only Ren-
derMan RIS renderer: we have seen similar image differences be-
tween different CPU vendors and operating systems, and even be-
tween debug and optimized builds using the same compiler. These
differences have not been objectionable in practice.

4.6.2. OSL Sample and Display Filters

RenderMan allows post-processing workflows on sample and pixel
buffers via a plugin infrastructure in the form of sample and dis-
play filters. The sample and display filter infrastructure vastly in-
creases the domain of images that can be produced without subse-
quent compositing treatment; see Figure 7 for a stylized look (non-
photoreal) example. In XPU, these filters are implemented in OSL.
Sample filters describe transformations made to sample values be-
fore they are pixel filtered. They always operate on raw camera
samples; their changes to values in the sample buffer become a per-
manent part of the final render. Operating at sample level offers a
unique advantage: the ability to access ray hit information, includ-
ing geometry primvars and attributes. The downside for this support
is that camera ray and hit buffers need to be kept in memory until
execution of the sample filter. Display filters are commonly used for
color space transformations, to suppress infinite/NaN/negative col-
ors, and for edge detection. They run on accumulated pixel-filtered
results, and do not offer any hit information since operations are
carried out at a pixel level. Any modifications made to the pixel
buffer via display filters are always overwritten at every iteration.

Figure 7: Stylized image generated using sample and display fil-
ters. Rendered by Christos Obretenov. ©Disney/Pixar.

Reading a pixel or sample value is done via the texture() func-
tion, where instead of passing in a filename as input, shader writers
pass in AOV names; static AOV names are converted to indices by
the renderer to optimize runtime costs. Writing transformed values
back is done via closures provided by OSL. Display and sample
filters also provide the ability to read a region of pixels in order
to infer motion, objects, or edges. This may require looking up re-
gions outside the current bucket (without locking the framebuffer),
potentially reading data from a slightly different wavefront itera-
tion.

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Christensen, Fong, Kilpatrick, et al. / RenderMan XPU 13 of 17

Daisy-chaining of sample and display shaders is done by exe-
cuting each shader one after the other. Every shader operates on
a bucket of pixels either right before accumulating into the pixel
buffer or after. For display filter chaining, XPU keeps an entire
copy of the pixel buffer in order to be able to independently call
shaders one after the other, instead of asking shader writers to pass
the outputs of their shaders on to the next one. Our approach allows
users to only worry about their own shader without having to pay
attention to what might come before or after it. Due to the double
buffering of the pixel buffer, shaders that use inputs from a region
of pixels (edge detection filter, for example) also means that the
region read from the pixel or sample buffer will always be accumu-
lated pixels rather than the value from the previous shader in the
chain. This is because a thread executing a particular shader on a
bucket of pixels cannot guarantee that it can read from a pixel value
that a different thread might be writing to, causing race conditions
and possible garbage values being picked up.

4.6.3. Optimized Subsurface Scattering and Volumes on GPUs

Our XPU implementation of diffusion sss follows the RIS imple-
mentation closely. There is only one batch of sss rays, with shading
at their hit points, so the execution coherency is good. The XPU
implementation of brute-force Monte Carlo path-traced sss is more
interesting. Here, a random sss path is followed, tracing one small
step at a time, until it hits a surface or a maximum number of steps
has been reached (typically 256). The path lengths differ wildly,
leading to starvation on GPUs: many cores can sit idle because
their path has terminated quickly, while a few cores keep generat-
ing new steps and tracing new rays. To ameliorate this problem, we
use speculative paths: once less than half the cores are active, we
generate multiple steps (scatters) along each path, and intersection
test their sss rays together. Once three quarters of the rays have ter-
minated, the remaining rays are speculatively replicated three times
and each ray takes four steps, and so on. This gives better utiliza-
tion of the GPU cores than alternating single trace and scatter steps
when the GPU occupancy is thinning out.

We encountered similar issues with tracking methods for vol-
umetric integration. The number of steps taken can vary wildly
across rays in a wavefront, again leading to starved GPU cores.
Ray-marching with an unbiased technique [KdPN21] can avoid this
problem, but we found it less performant than tracking methods on
the CPU with our well-tuned octree. We alleviate this problem on
the GPU using a similar speculative path extension approach to sss:
once half the rays have exited, at the beginning of the next tracking
step we synchronize, sort and reorder current work, and duplicate
remaining rays and their current tracking state. From this point on,
each ray takes two tracking steps through the octree. The duplicated
rays are offset by one step from their originals and inherit the same
random number context. Similar when only one quarter of the rays
remain, etc.

4.6.4. Statistics Output

The RenderMan statistics system underwent a complete overhaul
during the early development of XPU. This new system is agnos-
tic to its data source, supporting both RIS and XPU renderers, as
well as other sources such as digital content creators (DCCs) and

plugins. XPU relies exclusively on this updated system for its di-
agnostics. Previously, diagnostic data were only accessible through
an end-of-render report. However, with interactive rendering be-
coming a crucial part of the daily workflow, there is now a need
for interactive statistics that provide real-time feedback to techni-
cal directors and artists as changes are made. This new system is
specifically designed for interactivity and extensibility. Instrumen-
tation has been decoupled from analysis and presentation, ensuring
minimal impact of instrumentation on the renderer’s performance
and maximum flexibility of data consumption.

Instrumentation payload data are collected into per-thread
buffers, each restricted to a single writer and a single reader.
This design allows for an efficient implementation of two types
of buffers: a sampled buffer for metrics such as counters, and a
reported event buffer. The sampled data buffer is non-atomic, en-
abling both reading and writing of payloads without the need for
locking. This approach may result in slightly out-of-order data up-
dates, which is acceptable given the frequency of updates compared
to reads. The event buffer is implemented as an almost lock-free
ring buffer. Events are reported by the renderer only if there is an
interested listener.

For performance comparison and feature validation, we have
a standard set of data collected for XPU that aligns with that of
RIS. For example, system memory, time-to-first pixel/iteration, ray
counts, and overall render time. XPU-specific stats include BVH
build time, texture cache, and more extensive memory tracking. All
data is available for extraction at any point during a render, and any
subset of data can be gathered for a post-render JSON report.

Qt-based statistics viewing tools present real-time data from an
active render, enabling users to track performance and troubleshoot
issues on the fly. These live data stream widgets are integrated into
each of our DCC bridge plugins, as well as a standalone viewing
application.

Instrumentation in RenderMan is always enabled, but the re-
porting of metric data relies on the presence of diagnostic plugins
known as “Listeners”. These Listener plugins can collect varying
amounts of diagnostic information according to user needs, ranging
from a live stream of telemetry data to a post-render report detailing
time and memory usage.

5. Results: Performance Evaluation

Most images in this section are rendered on a computer with an
AMD Epyc 7763 processor with 31 cores running at 2.4 GHz with
128 GB memory, and an Nvidia RTX-A6000 Ampere graphics card
with 10700 CUDA cores and 24 GB memory. Render times labeled
‘xpucpu’ are rendered using only the CPU cores, times marked
‘xpugpu’ are rendered only on the GPU, and ‘xpu’ means rendered
on both (the pixels are a mix). All images are rendered with 1024
pixels wide resolution; the shown images are rendered with ‘xpu’.

The reported XPU render times are without the initial tessella-
tion and displacement phase. For RIS, this is a bit harder to dis-
entangle since tessellation and displacement are done on-demand
during rendering. So for RIS, we subtract the time for the first iter-
ation and report the remaining time as the render time.

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



14 of 17 Christensen, Fong, Kilpatrick, et al. / RenderMan XPU

5.1. Raw Ray Tracing Speed

As a first test, we measure the “raw” ray tracing speed for a scene
with moderate complexity and no bxdf. Woody is modeled with 74
subdivision surfaces with displacement and around 46,000 cubic
curves. Figure 8 (left) shows Woody rendered for surface visual-
ization with 256 samples per pixel. Since all rays are camera rays,
this is a good test of the performance of coherent rays with very
simple shading (mainly computation of smooth normals and a few
shading parameters).

Figure 8: Woody rendered with surface patches and ambient oc-
clusion. ©Disney/Pixar.

In the second test, Woody is rendered with ambient occlusion
with 32 occlusion rays per camera ray hit point — see Figure 8
(right). This scenario is indicative of ray tracing speed for rays with
no shading at all, only hit/miss.

Table 1: Ray speed (Mrays/sec) and speedups for Woody

scene ris xpucpu xpugpu xpu

viz 12 21 ∼ 1.8× 91 ∼ 7.5× 111 ∼ 9.1×
amb occ 21 41 ∼ 2.0× 176 ∼ 8.4× 218 ∼ 10×

The ray tracing speed and speedups for both tests are listed in
Table 1. The CPU speedups of 1.8× and 2.0× compared to RIS —
running on the exact same hardware — is due to better tuning to
the cache hierarchy and improved coherency. The results also show
that ray tracing is more than 4 times faster on our GPU than on our
CPU for this scene.

5.2. Simple Scenes, Simple Shading

In this section we test different aspects of rendering using four
scenes with simple geometry and simple shading. These images are
rendered with 256 samples per pixel. The four scenes are shown in
Figure 9, and the render times are listed in Table 2.

We start with a Cornell box with two polymesh teapots (one
made of chrome, the other glass), rendered with 10 bounces of
global illumination. It should be noted that the speedups of 4.6×
on CPUs and 14.2× on GPU are higher than usual and not typical.

The second test is a test of hair rendering. The geometry consists
of 3128 long curves, shaded with a Chiang hair bxdf [CBTB16].
The hair is rendered with 4 bounces of global illumination. The

Figure 9: Simple scenes. Head geometry and textures kindly pro-
vided by Infinite Realities. Cloud from the Moana data set [Dis18].

Table 2: Render times and speedups for simple scenes

scene ris xpucpu xpugpu xpu

box 255s 56s ∼ 4.6× 18s ∼ 14.2× 14s ∼ 18.2×
hair 393s 181s ∼ 2.2× 31s ∼ 12.7× 26s ∼ 15.1×
head 139s 68s ∼ 2.0× 15s ∼ 9.3× 12s ∼ 11.6×
cloud 493s 192s ∼ 2.6× 146s ∼ 3.4× 81s ∼ 6.1×

combined speedup is 15.1×, and the XPU image quality is actually
better than RIS (the curves are smoother).

The next test is subsurface scattering on a human head. The head
is a single subdivision surface with displacement and an albedo
texture, with direct illumination from two light sources. The head
is rendered with brute-force path-traced subsurface scattering using
realistic parameters for pale skin; the combined speedup is 11.6×.

The last test in this section is a test of volume rendering: a cloud
rendered with 10 bounces of global illumination. The cloud density
is defined by a VDB data set. The CPU speedup of 2.6× is good;
however, the GPU speedup of 3.4× is a bit disappointing. We hope
to further optimize our volume rendering implementation for GPU
execution. In the meantime, this provides a good case for combined
CPU+GPU rendering.

5.3. Character Shading Tests

Now let’s look at shading tests for five characters from the Toy Story
movies. They are illuminated by a dome light source and have 4
bounces of global illumination. The images in Figure 10 are ren-
dered with 64 samples per pixel; images like these are often used
for texturing and material approvals and feedback.

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Christensen, Fong, Kilpatrick, et al. / RenderMan XPU 15 of 17

Figure 10: Five Toy Story characters. ©Disney/Pixar.

Table 3 shows the render times and speedups for rendering these
images with RIS and the three different variants of XPU. In sum-
mary, the speedups are 1.8-2.3× for CPU, 4.9-9.7× for GPU, and
5.3-11.3× for combined CPU+GPU.

Table 3: Render times and speedups for toys

character ris xpucpu xpugpu xpu

Buzz 78s 34s ∼ 2.3× 11s ∼ 7.1× 10s ∼ 7.8×
Jessie 79s 42s ∼ 1.9× 16s ∼ 4.9× 15s ∼ 5.3×
Alien 139s 67s ∼ 2.1× 17s ∼ 8.2× 17s ∼ 8.2×

P.pants 224s 122s ∼ 1.8× 23s ∼ 9.7× 21s ∼ 10.7×
Rex 68s 36s ∼ 1.9× 7s ∼ 9.7× 6s ∼ 11.3×

5.4. A Complex Production Scene

In this section we test a more complex scene: Bonnie’s room with
furniture, 13 toys, complex shading networks, many textures, 15
light sources, subsurface scattering, and 4 bounces of global il-
lumination. This scene renders using 14.3 GB peak memory in
RIS, 15.4 GB for CPU, and 16.8 GB for GPU. Render times and
speedups for various sample counts are listed in Table 4, and the
image rendered with 1024 samples per pixel is shown in Figure 1.

Table 4: Render times and speedups for room

spp ris xpucpu xpugpu xpu

4 25s 7.9s ∼ 3.2× 3.4s ∼ 7.4× 3.3s ∼ 7.6×
16 99s 39s ∼ 2.5× 14s ∼ 7.1× 12s ∼ 8.3×
64 379s 164s ∼ 2.3× 53s ∼ 7.2× 44s ∼ 8.6×

256 1571s 653s ∼ 2.4× 198s ∼ 7.9× 161s ∼ 9.8×
1024 6115s 2630s ∼ 2.3× 768s ∼ 8.0× 615s ∼ 9.9×

5.5. Scaling on More Powerful Hardware

We also tested Bonnie’s room on a more powerful computer with
two AMD Epyc 9654 CPUs with a total of 192 cores and hyper-
threading, running at 2.4 GHz with 527 GB total memory.

For RIS, the speedups are good with 192 threads (4.8× faster
than our base machine with 31 cores), but rendering actually gets
slower with more than 200 threads, indicating poor hyperthreading
utilization at very high thread counts.

With XPU running on both CPUs, we measured a speedup of
8.5× relative to our base machine: each core is roughly 20% faster,
there are about 6 times more cores, and hyperthreading ekes out
another 20% speedup. We consider that scaling result to be very
satisfying. The same machine also has two Nvidia RTX-6000 Ada
cards with 18200 CUDA cores and 48 GB each. With both GPU
cards, the speedup relative to our base machine (with one Ampere
card) is 3.0×. CPU rendering on 192 cores is almost as fast as two
GPUs.

5.6. Interactive Rendering

RenderMan XPU can run interactively inside Maya, Katana, and
Houdini. Figure 11 shows an interactive session in the Katana view-
port. This is a snapshot at 4 samples per pixel, with the interactive
denoiser [VRM*18; ZMV*21] enabled. Note that even with only
4 samples per pixel, the quality is good enough that a TD can make
informed design decisions regarding geometry, shading, textures,
and lighting. The render time — including writing of 32 output
AOV channels, running multiple pixel and display filters, and in-
teractive denoising — is 5 seconds with XPU.

Figure 11: Jessie rendered inside the Katana viewport. ©Disney/
Pixar.

The supplemental material contains a recording of a session with
XPU in Flow, interactively rendering Jessie with camera tumble,
material selection, and parameter changes.

6. Discussion and Future Work

We believe these results validate our design decisions for Render-
Man XPU. The combination of CPU and GPU power utilizes all
the available resources on modern computers.

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



16 of 17 Christensen, Fong, Kilpatrick, et al. / RenderMan XPU

As expected, rendering on a GPU is typically several times faster
than on a CPU. So why bother with CPU rendering at all? 1) Most
production rendering farms consist primarily of CPUs. 2) All the
scenes shown here fit within the GPU memory of a typical artists’
workstation, but larger scenes can be rendered purely on the CPU
without changes to the rendered image. 3) The extra boost from
adding a CPU varies from nearly nothing when GPU performance
is dominant (the alien) to almost twice the speed (the Moana cloud).
We like that speedup when it is available. 4) CPUs are more nimble
than GPUs when shaders need to be recompiled during an interac-
tive session.

The most important missing feature in XPU is the ability to ef-
ficiently handle hundreds or thousands of lights. In RIS, we have
fairly sophisticated light clustering, estimation, and selection algo-
rithms, and we need to implement something similar in XPU. Other
features from RIS that we would like to re-implement are bidirec-
tional path tracing, VCM, and manifold walking.

There are many avenues for further speedups. We hope that with
all our XPU shading code written with SIMD in mind, using vec-
torization and wider vector instructions will give a further 2.0× to
2.5× speedup for shading on CPUs. Implementing tessellation and
displacement shading on GPUs should give a good speedup of the
pre-processing stage. As mentioned earlier, we would also like to
further optimize volume rendering on GPUs.

7. Conclusion

RenderMan XPU is a single renderer with a dual purpose: interac-
tive rendering for fast feedback, and off-line rendering of movie-
quality final frames. It utilizes heterogeneous hardware for optimal
use of available compute power and memory capacity, within tools
and workflows that artists are used to. It has a modular and flexible
architecture, and source code is shared as much as possible across
different types of hardware.

Writing a new version of RenderMan has been — and still is —
a very large project. Taking RenderMan XPU from a simple proof-
of-concept to a fully featured production renderer has only been
possible through the effort of a dedicated team over many years.
RenderMan XPU is still a work in progress, but we are excited
that artists have started using it in production. We feel that we are
very close to reaching feature parity with RenderMan RIS, with
significant improvements in rendering speed.

Acknowledgments

We would like to thank everyone involved in the development
and testing of RenderMan XPU. Huge thanks to former Ren-
derMan XPU core developers Marc Bannister, Max Liani, and
Cliff Ramshaw for their invaluable contributions. Also thanks to
Jonathan Shade, Andrew Kensler, Lucy Wilkes, and Sarah Inv-
ernizzi for their core contributions. RenderMan would be useless
without our fabulous bridge and support team: Katrin Bratland,
Ian Hsieh, Sarah Hutchinson, Sarah Forcier, Eugene Riecansky,
Damien Maupu, Peter Ellerington, and Christos Obretenov. Thanks
also to our sales and QA team: Dylan Sisson, Wendy Wirthlin, Leif
Pedersen, and Katya Ferguson. And finally, many thanks to the

RenderMan management team: Mark Manca, Adrian Bell, David
Laur, Oliver Meiseberg, and Steve May; Mark has been particu-
larly helpful with test scenes and use cases. We would also like to
thank our former manager Allan Poore for greenlighting the XPU
project. We are also grateful for help, support, and inspiration from
outside the RenderMan team. Pixar’s RTP effort was lead by Mark
Meyer, Danny Nahmias, and Florian Hecht. Studio testers for Toy
Story 5 include Bill Reeves, Jean-Claude Kalache, Athena Xenakis,
Michael Kilgore, Jeremy Heintz, Chris Burrows, Gus Dizon, and
Renee Tam. Gus recorded the interactive session in the supplemen-
tal material. Rick Sayre provided insightful comments. Also many
thanks to our external testers and users at studios big and small for
providing feedback, suggestions, and bug reports. Intel developers
Alex Wells and Charles Congdon help analyze and optimize our
RenderMan XPU core code for multiple platforms. Nvidia’s Eric
Enderton and David Hart have provided much guidance for GPU
specific issues. ILM provided the Lama source code for RIS that we
have adapted for XPU, and ILM’s Jonathan Stone is writing Mate-
rialX shaders for XPU. Disney Research developed the denoiser we
use for both interactive and final-frame denoising — special thanks
to Gerhard Röthlin.

References
[AG00] APODACA, ANTHONY and GRITZ, LARRY. Advanced Render-

Man: Creating CGI for Motion Pictures. Morgan Kaufmann, 2000 2.

[AK90] ARVO, JAMES and KIRK, DAVID. “Particle transport and image
synthesis”. Computer Graphics (Proc. SIGGRAPH) 24.4 (1990), 63–
66 6.

[BAC*18] BURLEY, BRENT, ADLER, DAVID, CHIANG, MATT JEN-
YUAN, et al. “The design and evolution of Disney’s Hyperion renderer”.
ACM Transactions on Graphics 37.3 (2018) 3.

[BL08] BURLEY, BRENT and LACEWELL, DYLAN. “Ptex: per-face tex-
ture mapping for production rendering”. Computer Graphics Forum
(Proc. Eurographics Symposium on Rendering) 27.4 (2008), 1155–
1164 11.

[CBTB16] CHIANG, MATT JEN-YUAN, BITTERLI, BENEDIKT, TAPPAN,
CHUCK, and BURLEY, BRENT. “A practical and controllable hair and
fur model for production rendering”. Computer Graphics Forum (Proc.
Eurographics) 35.2 (2016), 275–283 8, 14.

[CC78] CATMULL, EDWIN and CLARK, JAMES. “Recursively generated
B-spline surfaces on arbitrary topological meshes”. Computer Aided De-
sign 10.6 (1978), 350–355 5.

[CCC87] COOK, ROBERT, CARPENTER, LOREN, and CATMULL, EDWIN.
“The Reyes image rendering architecture”. Computer Graphics (Proc.
SIGGRAPH) 21.4 (1987), 95–102 2.

[CDE*14] CIGOLLE, ZINA, DONOW, SAM, EVANGELAKOS, DANIEL, et
al. “Survey of efficient representations for independent unit vectors”.
Journal of Computer Graphics Techniques 3.2 (2014) 8.

[CFLB06] CHRISTENSEN, PER, FONG, JULIAN, LAUR, DAVID, and
BATALI, DANA. “Ray tracing for the movie ‘Cars’”. Proc. IEEE Sym-
posium on Interactive Ray Tracing. 2006, 1–6 2, 7.

[CFS*18] CHRISTENSEN, PER, FONG, JULIAN, SHADE, JONATHAN, et
al. “RenderMan: an advanced path tracing architecture for movie render-
ing”. ACM Transactions on Graphics 37.3 (2018) 2, 6.

[Chr08] CHRISTENSEN, PER. Point-based approximate color bleeding.
Tech. rep. 08-01. Pixar Animation Studios, 2008 2.

[Dis18] DISNEY ANIMATION. Moana cloud data set. 2018. URL: https:
//www.disneyanimation.com/data-sets/ 14.

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://www.disneyanimation.com/data-sets/
https://www.disneyanimation.com/data-sets/


Christensen, Fong, Kilpatrick, et al. / RenderMan XPU 17 of 17

[FFB*09] FISHER, MATTHEW, FATAHALIAN, KAYVON, BOULOS,
SOLOMON, et al. “DiagSplit: parallel, crack-free, adaptive tessellation
for micropolygon rendering”. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia) 28.5 (2009) 7.

[FHL*18] FASCIONE, LUCA, HANIKA, JOHANNES, LEONE, MARK, et
al. “Manuka: A batch-shading architecture for spectral path tracing in
movie production”. ACM Transactions on Graphics 37.3 (2018) 3.

[FHWK17] FONG, JULIAN, HABEL, RALF, WRENNINGE, MAGNUS, and
KULLA, CHRISTOPHER. “Production Volume Rendering”. SIGGRAPH
Courses. 2017 9.

[Fon23] FONG, JULIAN. “Volume rendering for Pixar’s Elemental”. SIG-
GRAPH Tech Talks. 2023 9.

[GBPG11] GARANZHA, KIRILL, BELY, ALEXANDER, PREMOZE, SI-
MON, and GALAKTIONOV, VLADIMIR. “Out-of-core GPU ray tracing
of complex scenes”. SIGGRAPH Tech Talks. 2011 2, 11.

[GIF*18] GEORGIEV, ILIYAN, IZE, THIAGO, FARNSWORTH, MIKE, et al.
“Arnold: A brute-force production path tracer”. ACM Transactions on
Graphics 37.3 (2018) 3.

[GSKC10] GRITZ, LARRY, STEIN, CLIFFORD, KULLA, CHRIS, and
CONTY, ALEJANDRO. “Open Shading Language”. SIGGRAPH Tech
Talks. 2010 2, 9.

[Kaj86] KAJIYA, JIM. “The rendering equation”. Computer Graphics
(Proc. SIGGRAPH) 20.4 (1986), 143–150 6.

[KdPN21] KETTUNEN, MARKUS, D’EON, EUGENE, PANTALEONI, JA-
COPO, and NOVÁK, JAN. “An unbiased ray-marching transmittance esti-
mator”. ACM Transactions on Graphics (Proc. SIGGRAPH) 40.4 (Aug.
2021) 13.

[KWR*17] KELLER, ALEXANDER, WÄCHTER, CARSTEN, RAAB,
MATTHIAS, et al. The Iray light transport simulation and rendering
system. Tech. rep. Nvidia, 2017 3.

[LA04] LATTNER, CHRIS and ADVE, VIKRAM. “LLVM: A compilation
framework for lifelong program analysis and transformation”. Proc. In-
ternational Symposium on Code Generation and Optimization (CGO).
2004, 75–88 9.

[LGXT17] LEE, MARK, GREEN, BRIAN, XIE, FENG, and TABELLION,
ERIC. “Vectorized production path tracing”. Proc. High Performance
Graphics. 2017 3.

[LKA13] LAINE, SAMULI, KARRAS, TERO, and AILA, TIMO. “Mega-
kernels considered harmful: wavefront path tracing on GPUs”. Proc.
High Performance Graphics. 2013, 137–143 4.

[Mus13] MUSETH, KEN. “VDB: high-resolution sparse volumes with dy-
namic topology”. ACM Transactions on Graphics 32.3 (2013) 9.

[Mus21] MUSETH, KEN. “NanoVDB: a GPU-friendly and portable VDB
data structure for real-time rendering and simulation”. SIGGRAPH Tech
Talks. 2021 9.

[Nah13] NAHMIAS, JEAN-DANIEL. Using Nvidia OptiX for lighting pre-
view in a Katana-based production pipeline. Tech talk at Nvidia Vi-
sual Computing Theater at SIGGRAPH. 2013. URL: https://www.
youtube.com/watch?v=LACmRpMYOak&t=7s 3.

[NO02] NAKAMARU, KOJI and OHNO, YOSHIO. “Ray tracing for curves
primitive”. Journal of WSCG 10 (2002), 311–316 8.

[NSJ14] NOVÁK, JAN, SELLE, ANDREW, and JAROSZ, WOJCIECH.
“Residual ratio tracking for estimating attenuation in participating me-
dia”. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 33.6
(2014) 9.

[PBD*10] PARKER, STEVEN, BIGLER, JAMES, DIETRICH, ANDREAS, et
al. “OptiX: a general purpose ray tracing engine”. ACM Transactions on
Graphics (Proc. SIGGRAPH) 29.4 (2010) 2, 3.

[PFAH10] PANTALEONI, JACOPO, FASCIONE, LUCA, AILA, TIMO, and
HILL, MARTIN. “PantaRay: fast ray-traced occlusion caching of mas-
sive scenes”. ACM Transactions on Graphics (Proc. SIGGRAPH) 29.4
(2010) 3.

[Pix21] PIXAR. MaterialX Lama. 2021. URL: https://rmanwiki-
26 . pixar . com / space / REN26 / 19661457 / MaterialX +
Lama 11.

[Pix23] PIXAR. OpenSubdiv. Pixar, 2023. URL: https://graphics.
pixar.com/opensubdiv/docs/intro.html 7.

[PJH23] PHARR, MATT, JAKOB, WENZEL, and HUMPHREYS, GREG.
Physically Based Rendering: From Theory to Implementation. 4th edi-
tion. MIT Press, 2023 3, 4, 6.

[PVL*05] PELLACINI, FABIO, VIDIMČE, KIRIL, LEFOHN, AARON, et al.
“Lpics: a hybrid hardware-accelerated relighting engine for computer
cinematography”. ACM Transactions on Graphics (Proc. SIGGRAPH)
24.3 (2005), 464–470 3.

[RKS*07] RAGAN-KELLEY, JONATHAN, KILPATRICK, CHARLIE,
SMITH, BRIAN, et al. “The Lightspeed automatic interactive lighting
preview system”. ACM Transactions on Graphics (Proc. SIGGRAPH)
26.3 (2007) 3.

[SHE*24] STEIN, CLIFFORD, HELLMUTH, CHRIS, ESTEVEZ, ALEJAN-
DRO CONTY, et al. “Spear: across the streaming multiprocessors — port-
ing a production renderer to the GPU”. Proc. Digital Production Sympo-
sium (DigiPro). 2024 3, 10.

[Sid25] SIDEFX. Karma XPU. 2025. URL: https://www.sidefx.
com/docs/houdini/solaris/karma_xpu.html 3.

[SS16] SMYTHE, DOUG and STONE, JONATHAN. MaterialX: an open
standard for network-based CG object looks. 2016. URL: https://
www.materialx.org 11.

[TCE05] TALBOT, JUSTIN, CLINE, DAVID, and EGBERT, PARRIS. “Im-
portance resampling for global illumination”. Proc. Eurographics Sym-
posium on Rendering. 2005, 139–146 6.

[Tur17] TURQUIN, EMMANUEL. Practical multiple scattering compensa-
tion for microfacet models. Tech. rep. Industrial Light & Magic, 2017 11.

[Ups90] UPSTILL, STEVE. The RenderMan Companion. Addison Wesley,
1990 2.

[VG95] VEACH, ERIC and GUIBAS, LEONIDAS. “Optimally combining
sampling techniques for Monte Carlo rendering”. Computer Graphics
(Proc. SIGGRAPH) (1995), 419–428 6.

[VRM*18] VOGELS, THIJS, ROUSSELLE, FABRICE, MCWILLIAMS,
BRIAN, et al. “Denoising with kernel prediction and asymmetric loss
functions”. ACM Transactions on Graphics (Proc. SIGGRAPH) 37.4
(2018) 15.

[WBW*14] WOOP, SVEN, BENTHIN, CARSTEN, WALD, INGO, et al.
“Exploiting local orientation similarity for efficient ray traversal of hair
and fur”. Proc. High Performance Graphics. 2014, 41–49 8.

[WGER05] WEXLER, DANIEL, GRITZ, LARRY, ENDERTON, ERIC, and
RICE, JONATHAN. “GPU-accelerated high-quality hidden surface re-
moval”. Proc. Graphics Hardware. 2005, 7–14 3.

[WMHL65] WOODCOCK, E., MURPHY, T., HEMMINGS, P., and LONG-
WORTH, T. “Techniques used in the GEM code for Monte Carlo neu-
tronics calculations in reactors and other systems of complex geometry”.
Applications of Computing Methods to Reactor Problems. Argonne Na-
tional Laboratory. 1965 9.

[WWB*14] WALD, INGO, WOOP, SVEN, BENTHIN, CARSTEN, et al.
“Embree: a kernel framework for efficient CPU ray tracing”. ACM Trans-
actions on Graphics (Proc. SIGGRAPH) 33.4 (2014) 2, 3.

[ZMV*21] ZHANG, XIANYAO, MANZI, MARCO, VOGELS, THIJS, et al.
“Deep compositional denoising for high-quality Monte Carlo render-
ing”. Computer Graphics Forum (Proc. Eurographics Symposium on
Rendering) 40.4 (2021) 15.

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://www.youtube.com/watch?v=LACmRpMYOak&t=7s
https://www.youtube.com/watch?v=LACmRpMYOak&t=7s
https://rmanwiki-26.pixar.com/space/REN26/19661457/MaterialX+Lama
https://rmanwiki-26.pixar.com/space/REN26/19661457/MaterialX+Lama
https://rmanwiki-26.pixar.com/space/REN26/19661457/MaterialX+Lama
https://graphics.pixar.com/opensubdiv/docs/intro.html
https://graphics.pixar.com/opensubdiv/docs/intro.html
https://www.sidefx.com/docs/houdini/solaris/karma_xpu.html
https://www.sidefx.com/docs/houdini/solaris/karma_xpu.html
https://www.materialx.org
https://www.materialx.org

