
Python Dependency Management: UV vs pip and venv

Managing Python dependencies is crucial for keeping your projects isolated and

reproducible. This tutorial covers traditional tools (`pip` and `venv`) and introduces

`uv`, a modern alternative.

1. Traditional Tools: pip + venv

What is venv?

`venv` is a built-in Python module that creates isolated environments for dependencies.

How to Use venv and pip

1. **Create a virtual environment**

```bash

python -m venv env

```

2. **Activate the environment**

- On Windows:

```bash

env\Scripts\activate

```

- On macOS/Linux:

```bash

source env/bin/activate

```

3. **Install packages with pip**

```bash

pip install requests

```

4. **Freeze dependencies**

```bash

pip freeze > requirements.txt

```

5. **Install from requirements**

```bash

pip install -r requirements.txt

```

2. Modern Tool: UV

`uv` is a fast Python package manager and virtual environment tool from the developers

of `pipx` and `rye`.

Advantages of `uv`

- Much faster than pip

- Replaces both pip and venv

- More deterministic and cache-aware

- Can install from `requirements.txt` or `pyproject.toml`

Installing `uv`

```bash

curl -Ls https://astral.sh/uv/install.sh | sh

```

Or with pipx:

```bash

pipx install uv

```

Using `uv`

1. **Install packages into a virtual environment**

```bash

uv venv

uv pip install requests

```

2. **Run Python in the environment**

```bash

uv python

```

3. **Freeze dependencies**

```bash

uv pip freeze > requirements.txt

```

4. **Install from requirements**

```bash

uv pip install -r requirements.txt

```

With pyproject.toml

If using `pyproject.toml`, `uv` also supports:

```bash

uv pip install .

```

Summary

| Feature | pip + venv | uv |

|----------------|-------------------|---------------------------|

| Speed | Moderate | Very Fast |

| Built-in | Yes (in Python) | No (third-party) |

| Ease of Use | Manual activation | Simplified workflow |

| Locking | `pip freeze` | `uv pip freeze` |

| Modern tooling | No | Yes (supports `pyproject`) |

Use `pip` + `venv` if you want the standard, built-in solution.

Use `uv` if you want speed and a streamlined workflow.

