2025 EDITION

5

THE ILLUSTRATED
GUIDEBOOK

@l =

I'X%O Daily Dose of Avi Chawla & Akshay Pachaar
O .
* Data Science DailyDoseofDS.com

DailyDoseofDS.com

The reading time of this book is about 8 hours. But not all chapters will be of
relevance to you. This 2-minute assessment will test your current expertise and

recommend chapters that will be most useful to you.

Do you have the skills to build production-
ready Agents?

Answer 10 yes/no questions and we'll email you the list of chapters you must read to level up your Al Agent skills

Start The Assessment

Scan the QR code below or open this link to start the assessment. It will only take

2 minutes to complete.

https://bit.lyv/agents-assessment

https://www.dailydoseofds.com/
https://bit.ly/agents-assessment

AI Agents...

DailvDoseofDS.com

What is an AT Agent?
Agent vs LLM vs RAG

LLM (Large Language Model)
RAG (Retrieval-Augmented Generation)

Building blocks of AT Agents

1) Role-playing
2) Focus/Tasks
3) Tools
#3.1) Custom tools
#3.2) Custom tools via MCP
4) Cooperation

S Agentic AT Design Patterns

#1) Reflection pattern
#2) Tool use pattern
#3) ReAct (Reason and Act) pattern
#4) Planning pattern
#5) Multi-Agent pattern

S Levels of Agentic AI Systems
#1) Basic responder
#2) Router pattern
#3) Tool calling
#4) Multi-agent pattern
#5) Autonomous pattern

https://www.dailydoseofds.com/

DailvDoseofDS.com

AI Agents Projects 34
FET) AQLRNEIC RAG.ceucurenrenrersenseesenssenssenssensssssssssessssssssssssssssssssssssssessssssssssssssssssssssesass 3S
F£2) V0ICE RAG AGLNL cucreerenersenssssessssssessassssssess 41
F#3) MULLI-AGENt FUGNE FINARY .uuiiircrrenneensesenensssssssssssssssssssssssssssasssssssssssssssssss 46
FA) FINANCIAL ANALYSE.cnreiernerennernensersssesses 54
F#S) Brand MONILOriNG SYSEEM....wceeereesnensnenssesesssesssesssesssessssssssssasssssssesssssens 59
FH6) MULLI-AGENt HOLEL FINOEY . cuucereerenrensernsenssenssensensessesssesssesssesssessssssssssssssesss 6%
H7F) MULLI-Agent Deep RESEAICIEY ... weseensensenssessessssssasssesssssssssssessssssssssnes 75
#38) Human-like Memory fOr AGENLES.....ererissinsesssssesssesssesssssses 82
FHA) MULLI-AGENE BOOK WHIERY c..uuenencerenrenennensensessensenssessensssssensesssansessssssensessens 89
#10) Multi-agent Content Creation SYSEEM.......crensrenseensennsenssenssenssenens ag
FH11) Documentation WrIiter FLOW... e ceeesenenssenseneesenssesssenssenssensesssssssenss 106
FE12) NEWS GENEIALOY c..eueureneesensenssnssensessessesssssssssassssssassssssssssssssssassssssasssssssssssssssss 112

https://www.dailydoseofds.com/

DailyDoseofDS.com

AL Agents

https://www.dailydoseofds.com/

DailyDoseofDS.com

Imagine you want to generate a report on the latest trends in Al research. If you
use a standard LLM, you might:

Do this/
Cl«amge this/
Upolo«te this

O W

User ChatGPT

Ask for a summary of recent Al research papers.
Review the response and realize you need sources.
Obtain a list of papers along with citations.

Find that some sources are outdated, so you refine your query.

Al S

Finally, after multiple iterations, you get a useful output.

This iterative process takes time and effort, requiring you to act as the

decision-maker at every step.
Now, let’s see how Al agents handle this differently:

A Research Agent autonomously searches and retrieves relevant Al research

papers from arXiv, Semantic Scholar, or Google Scholar.

https://www.dailydoseofds.com/

DailvDoseofDS.com

ArXiv Google scholar
eCce 200
[N~}
Research agent ‘ Semantic
scholar

e A Filtering Agent scans the retrieved papers, identifying the most relevant

ones based on citation count, publication date, and keywords.

—
—
—

L)
l
l
|

(AR

——
——
-

Filtering
Research papers agent Relevant papers

e A Summarization Agent extracts key insights and condenses them into an

— 8 — Insights

Summarization
Relevant papers Agent

easy-to-read report.

e A Formatting Agent structures the final report, ensuring it follows a clear,
professional layout.

https://www.dailydoseofds.com/

DailyDoseofDS.com

Insights — % — =

Formatting
Agent Summary

Here, the Al agents not only execute the research process end-to-end but also
self-refine their outputs, ensuring the final report is comprehensive, up-to-date,

and well-structured - all without requiring human intervention at every step.

What is an AT Agent ?

tm

AT Agent

To formalize Al Agents are autonomous systems that can reason, think, plan,
figure out the relevant sources and extract information from them when needed,

take actions, and even correct themselves if something goes wrong.

https://www.dailydoseofds.com/

DailyDoseofDS.com

Agent

Let’s break it down with a simple analogy:

e LLM is the brain.
e RAG is feeding that brain with fresh information.
e An agent is the decision-maker that plans and acts using the brain and the

tools.
LLM (Large Language Model)
An LLM like GPT-4 is trained on massive text data.

It can reason, generate, summarize but only using what it already knows (i.e., its

training data).

S~
S N {

)‘

LLM is smart but static

https://www.dailydoseofds.com/

DailyDoseofDS.com

It’s smart, but static. It can’t access the web, call APIs, or fetch new facts on its

own.

RAG (Retrieval-Augmented Generation)

RAG enhances an LLM by retrieving external documents (from a vector DB,
search engine, etc.) and feeding them into the LLM as context before generating

a response.

RAG ---->

Retrieves fresh knowledge

(i

RAG makes the LLM aware of updated, relevant info without retraining.

Agent

An Agent adds autonomy to the mix.

Agent thinks and act

It doesn’t just answer a question—it decides what steps to take:
Should it call a tool? Search the web? Summarize? Store info?

An Agent uses an LLM, calls tools, makes decisions, and orchestrates workflows

just like a real assistant.

https://www.dailydoseofds.com/

DailyDoseofDS.com

Al agents are designed to reason, plan, and take action autonomously. However,
to be effective, they must be built with certain key principles in mind. There are
six essential building blocks that make AI agents more reliable, intelligent, and

useful in real-world applications:

1. Role-playing
2. Focus

3. Tools

4. Cooperation
5. Guardrails
6. Memory

Let’s explore each of these concepts and understand why they are fundamental to

building great Al agents.
1) Role-playing

One of the simplest ways to boost an agent’s performance is by giving it a clear,

specific role.

>~ BA4

Senior Content Research
developer writer analyst

Agent
A generic Al assistant may give vague answers. But define it as a “Senior contract
lawyer,” and it responds with legal precision and context.
Why?

Because role assignment shapes the agent’s reasoning and retrieval process. The

10

https://www.dailydoseofds.com/

DailyDoseofDS.com

more specific the role, the sharper and more relevant the output.

2) FocusfTasks

Focus is key to reducing hallucinations and improving accuracy.

Giving an agent too many tasks or too much data doesn’t help - it hurts.

Potential ‘
oRzze:a @ @ @
=N = =

A t Senior Content Research
gen developer writer analyst

oo

Overloading leads to confusion, inconsistency, and poor results.

For example, a marketing agent should stick to messaging, tone, and audience

not pricing or market analysis.

Instead of trying to make one agent do everything, a better approach is to use
multiple agents, each with a specific and narrow focus.

Specialized agents perform better - every time.

3) Tools

Agents get smarter when they can use the right tools.

But more tools = better results.

11

https://www.dailydoseofds.com/

DailyDoseofDS.com

Tool
Web Search

Research Qyogl
analyst agent A

6 Streamlit App

Ask anything...

Consolidated

results

Research
Analyst

'

\ Task !

\

> [web search|-*
& Analysis

For example, an Al research agent could benefit from:

e A web search tool for retrieving recent publications.
e A summarization model for condensing long research papers.

e A citation manager to properly format references.

But if you add unnecessary tools—like a speech-to-text module or a code

execution environment—it could confuse the agent and reduce efficiency.

#3.1) Custom tools

While LLM-powered agents are great at reasoning and generating responses,
they lack direct access to real-time information, external systems, and specialized

computations.
Tools allow the Agent to:

e Search the web for real-time data.
e Retrieve structured information from APIs and databases.
e Execute code to perform calculations or data transformations.

e Analyze images, PDFs, and documents beyond just text inputs.

12

https://www.dailydoseofds.com/

DailyDoseofDS.com

CrewAl supports several tools that you can integrate with Agents, as depicted

below:

12 Powerful m Tools to Build I N join. DailyDoseof DS.com

1) File Read tool 2) File Writer tool 3) Code Interpreter tool

4) Scrape Website tool

Extract and read

content of website o directory

?) Firecrawl Search tool 9) PDF Search tool

Seorch and convert Run, manaae, and monitor RAG tool for

s to markdown headless browsers searching in PDFs

10) Github Search tool 11) TXT Search tool

However, you may need to build custom tools at times.

In this example, we're building a real-time currency conversion tool inside
CrewAl. Instead of making an LLM guess exchange rates, we integrate a custom
tool that fetches live exchange rates from an external API and provides some

insights.

Below, let's look at how you can build one for your custom needs in the CrewAl

framework.

Firstly, make sure the tools package is installed:

13

https://www.dailydoseofds.com/

DailvDoseofDS.com

notebook.ipynb

!pip install crewai-tools

You would also need an API key from here: https://www.exchangerate-api.com/

(it's free). Specify it in the .env file as shown below:

OPENAI_API_KEY="sk-4..."
SERPER_API_KEY="42131..."
EXCHANGE_RATE_API_KEY="753..."

Once that's done, we start with some standard import statements:

notebook.ipynb

dotenv imj t load_dotenv
load_dotenv()
imy os
requests
typing import Type
crewai.tools import BaseTool
pydantic import BaseModel, Field

Next, we define the input fields the tool expects using Pydantic.

2rterInput(BaseModel):
ema for CurrencyConverterTool."™"
amount: float Field(..., description="The amount to convert.")

from_currency: str Field(..., description="The source currency code (e.g., 'USD').")

e.
to_currency: st Field(..., description="The target currency code (e.g., "EUR').")

14

https://www.dailydoseofds.com/
https://www.exchangerate-api.com/

DailvDoseofDS.com

Now, we define the CurrencyConverterTool by inheriting from BaseTool:

000 notebook.ipynb

Curx cy werterToo 1seTool):
name rrency Converter Tool"
description: sti "Converts an amount from one currency to another."
args_schema: Typel[BaseModel] CurrencyConverterInput
api_key: st os.getenv("EXCHANGE _RATE_API_KEY")

Every tool class should have the _run method which we will execute whenever

the Agents wants to make use of it.

For our use case, we implement it as follows:

oK ipynt

(self, amount: float, from_currency: str, to_currency: str) — 2
url “hetps: //v6.exchanderate-apl.com/ve/ Lf.api_key)/latest/({from_currency)"

response requests.get(url)

f response.status_code
"Failed to fetch exchande rates."

data response. json()
"conversion data to_currency data["conversion_rates”):
' d currency code to_currency}"

rate data["conversion_rates”][to_currency]
converted_amount amount + rate
*{amount from_currency) is equ Llent to (converted_ amount to_currency)."

In the above code, we fetch live exchange rates using an API request. We also

handle errors if the request fails or the currency code is invalid.

Now, we define an agent that uses the tool for real-time currency analysis and

attach our CurrencyConverterTool, allowing the agent to call it directly if needed:

notebook.ipynb

crewai im Lt Agent

currency_analyst Agent(
role="Currency Analy

real-time currency conversions and financia

You are a financ t ‘] owledge of €lobal

"You help users Y ¢ n and financial dec

ols=[CurrencyConverterTool()],

15

https://www.dailydoseofds.com/

DailvDoseofDS.com

We assign a task to the currency_analyst agent.

notebook.ipynb

crewai rt Task

currency_conversion_task Task(

"using real-time exchange r

"Provide the equivalent amount and "

"explain any relevant financial context

j_output=("A detailed response including the "
converted amount and financial insights."),

it=currency_analyst

notebook.ipynb

crewai rt Crew, Process

crew Crew(
ants=[currency_analyst],
[currency_conversion_task],
;s=Process.sequential

response crew.kickoff (inputs={"amount":
"from_currency": "USD",
"to_currency": "EUR"})

Printing the response, we get the following output:

from IPython.display import Markdown
Markdown(response.raw)

0.0s

Python

Converting 100 USD to EUR using real-time exchange rates results in approximately 95.40 EUR

In the financial context, it's worth noting that exchange rates can fluctuate due to various factors like economic
indicators, interest rates, and geopolitical events. As of now, the conversion reflects current market conditions, which
are influenced by the latest economic data releases and monetary policies in both the United States and the
Eurozone. Given the recent trends, if you're planning a trip to Europe or making an investment, these rates may
change, so it's beneficial to monitor them regularly.

Works as expected!

16

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3.2) Custom tools via MCP

Now, let’s take it a step further.

Instead of embedding the tool directly in every Crew, we'll expose it as a reusable
MCP tool—making it accessible across multiple agents and flows via a simple

Server.

First, install the required packages:

200 notebook.ipynb

Ipip install mcp-server requests python-dotenv

We'll continue using ExchangeRate-API in our .env file:

(EY=your_api_key_here

WEe'll now write a lightweight server.py script that exposes the currency converter

tool. We start with the standard imports:

e Server.py

t requests, os
dotenv import load_dotenv
n mcp.sexrver.fastmcp import FastMCP

Now, we load environment variables and initialize the server:

17

https://www.dailydoseofds.com/

DailvDoseofDS.com

o000 @ server.py

load_dotenv()

mcp = FastMCP('currency-converter-server', port=8081)
API_KEY os.getenv("EXCHANGE_RATE_API_KEY")

Next, we define the tool logic with @mcp.tool():

@ server.py

amount: flo 2
from_currency: str
to_currency:

""Convert currency using real-time excha
response requests.get(
f"https://v6.exc te-api.com/v6/{API_K
f"{from_currency}/{to_currency}/{amount}"
) .json()

(
f"{amount} {from_currency.uppex())} =
'{response['conversior B | f} {to_currency.uppex()
"(Rate: {response['conversion_rate']:.4f})"

This function takes three inputs—amount, source currency, and target
currency—and returns the converted result using the real-time exchange rate
API.

To make the tool accessible, we need to run the MCP server. Add this at the end

of your script:

@ server.py

__name__ = "__main
mep.run(transport="sse")

18

https://www.dailydoseofds.com/

DailyDoseofDS.com

This starts the server and exposes your convert_currency tool at:
http://localhost:8081/sse.

Now any CrewAl agent can connect to it using MCPServerAdapter. Let’s now

consume this tool from within a CrewAI agent.

First, we import the required CrewAl classes. We'll use Agent, Task, and Crew

from CrewAl, and MCPServerAdapter to connect to our tool server.

notebook.ipynb

‘om crewal import Agent, Task, Crew
om crewai_tools import MCPServerAdapter

Next, we connect to the MCP tool server. Define the server parameters to

connect to your running tool (from server.py).

LN notebook.ipynb

server_params = {

"url": "http://localhost:8081/sse",
"transport": "sse"

Now, we use the discovered MCP tool in an agent:

This agent is assigned the convert_currency tool from the remote server. It can

now call the tool just like a locally defined one.

19

https://www.dailydoseofds.com/
http://localhost:8081/sse

DailvDoseofDS.com

2000

notebook.ipynb

currency_a

o000 notebook.ipynb

conversion_task Task(

200 notebook.ipynb

crew Crew(

s=[currency_agent], tasks=[conversion_task], verbose=Trus
)

result crew
“amount":

H

int{result)

Printing the result, we get the following output:

print(result)

100 USD = 8734.13 INR (Rate: 87

20

https://www.dailydoseofds.com/

DailyDoseofDS.com

4) Cooperation

Multi-agent systems work best when agents collaborate and exchange feedback.

Instead of one agent doing everything, a team of specialized agents can split tasks

and improve each other’s outputs.

S) Multi-agent Pattern

&

Consider an Al-powered financial analysis system:

e One agent gathers data
e another assesses risk,
e a third builds strategy,

e and a fourth writes the report

Collaboration leads to smarter, more accurate results.

The best practice is to enable agent collaboration by designing workflows where

agents can exchange insights and refine their responses together.

21

https://www.dailydoseofds.com/

DailyDoseofDS.com
S) Guardrails

Agents are powerful but without constraints, they can go off track. They might

hallucinate, loop endlessly, or make bad calls.

Guardrails ensure that agents stay on track and maintain quality standards.

Roles g /
R

Senior

,/
Agent developer ,‘1’12’: Guardrails

Objectlve

Examples of useful guardrails include:

e Limiting tool usage: Prevent an agent from overusing APIs or generating
irrelevant queries.

e Setting validation checkpoints: Ensure outputs meet predefined criteria
before moving to the next step.

e Establishing fallback mechanisms: If an agent fails to complete a task,

another agent or human reviewer can intervene.

For example, an Al-powered legal assistant should avoid outdated laws or false

claims - guardrails ensure that.

6) Memory

Finally, we have memory, which is one of the most critical components of Al

agents.

22

https://www.dailydoseofds.com/

DailyDoseofDS.com

Without memory, an agent would start fresh every time, losing all context from
previous interactions. With memory, agents can improve over time, remember

past actions, and create more cohesive responses.

{@ Objective
O)
Roles @ /
@ Sl _\‘_. ‘ Memory
; =

Senior
Agent developer

A :
¢,7, Guardrails
/ ,I J
';I’

v

Different types of memory in Al agents include:

e Short-term memory - Exists only during execution (e.g., recalling recent

conversation history).

e Long-term memory - Persists after execution (e.g., remembering user

preferences over multiple interactions).

e Entity memory - Stores information about key subjects discussed (e.g.,

tracking customer details in a CRM agent).

For example, in an Al-powered tutoring system, memory allows the agent to

recall past lessons, tailor feedback, and avoid repetition.

23

https://www.dailydoseofds.com/

DailyDoseofDS.com

S Agentic AI Design Patterns

Agentic behaviors allow LLMs to refine their output by incorporating

self-evaluation, planning, and collaboration!

The following visual depicts the 5 most popular design patterns employed in
building AT agents.

(1) Reflection Pattern
S Most Popular e a4 ";::::ﬁ
Agentic AL ™ .

5 o
Design Patterns RPELEL

A L~ :
2 I B deopseok| o _ _ _ :
T‘\&z join.DailyDoseofDS.com L (stect)

D\ &
2) Tool Use Pattern 3) ReAct Pattern gm

7R

<1 Agent

User

\
!

L -
a = === |despoook | =~ T 7, ’ - = 3 | | dvopnosi ---)
Query um I Query um | 2
1 (Reason)
[
1

Tool A
(L
@ \
Response
A = Vector
\ < —Jdatabase
..... doopuool | @ - -
wm r?rma
(Genurate) L} apts
24

4) Planning Pattern
User i Generated tases
i i =
A
B Ty
: v task
Response
A
{1 m Jests_ <
Finished? m

24

https://www.dailydoseofds.com/

DailyDoseofDS.com
#1) Reflection pattern

()
1) Reflection Pattern

deepseek

m
(Relfect)

&

The Al reviews its own work to spot mistakes and iterate until it produces the

final response.

#2) Tool use pattern

~
2) Tool Use Pattern
User
@ ® | ____
G, - = = = = >» |deepseek |
Query WM |
1
|
I Tool
E calling
\
Response
A) Vector
1 databaso
“ - — — - |deepseek
tum > Tools &
(Generate) "€} arls

25

https://www.dailydoseofds.com/

Tools allow LLMs to gather more information by:

e Querying a vector database
e Executing Python scripts
e Invoking APIs, etc.

DailyDoseofDS.com

This is helpful since the LLM is not solely reliant on its internal knowledge.

#3) ReAct (Reason and Act) pattern

i)
3) ReAct Pattern gm
Agent
User ~N
g ’ ‘ - = P | |deepseek e Y
Query Lm B
(Reason) | :
! I
B =
|
Action
Response v
A
L — — — — |deepseek
wm ;
(Generate) Environmen
- J

ReAct combines the above two patterns:

e The Agent reflects on the generated outputs.

e It interacts with the world using tools.

A ReAct agent operates in a loop of Thought - Action » Observation, repeating

until it reaches a solution or a final answer. This is analogous to how humans

solve problems:

26

https://www.dailydoseofds.com/

DailyDoseofDS.com

ReAct Pattern

Note: Frameworks like CrewAl primarily use this by default.

To understand this, consider the output of a multi-agent system below:

s s v
Thought

As shown above, the Agent is going through a series of thought activities before

producing a response.

This is the ReAct pattern in action!

27

https://www.dailydoseofds.com/

DailyDoseofDS.com

More specifically, under the hood, many such frameworks use the ReAct
(Reasoning and Acting) pattern to let LLM think through problems and use tools

to act on the world.

For example, an agent in CrewAl typically alternates between reasoning about a
task and acting (using a tool) to gather information or execute steps, following

the ReAct paradigm.

This enhances an LLM agent’s ability to handle complex tasks and decisions by
combining chain-of-thought reasoning with external tool use like in this ReAct

implementation from scratch.

#4) Planning pattern

()
4) Planning Pattern

Generated tasks

I Execute
I single
+ task

Results &
(. - e w—

ReAct
Finished? A;e:t

J

Instead of solving a task in one go, the Al creates a roadmap by:

e Subdividing tasks

e Outlining objectives
This strategic thinking solves tasks more effectively.

Note: In CrewAl, specify ‘planning=True" to use Planning.

28

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/ai-agents-crash-course-part-10-with-implementation/#introduction
https://www.dailydoseofds.com/ai-agents-crash-course-part-10-with-implementation/#introduction

#5) Multi-Agent pattern

DailyDoseofDS.com

a

[N

-

S) Multi-agent Pattern

e There are several agents, each with a specific role and task.

e Each agent can also access tools.

All agents work together to deliver the final outcome, while delegating tasks to

other agents if needed.

29

https://www.dailydoseofds.com/

DailyDoseofDS.com

S Levels of Agentic AI Systems

Agentic Al systems don't just generate text; they can make decisions, call

functions, and even run autonomous workflows.

The visual explains 5 levels of Al agency—from simple responders to fully

autonomous agents.

(1) Basic Responder i
S Levels of Y[
Agentic AT | ~ -
Systems =
\§ join.DailyDoseofDS.com L m<— ------ o y)

30

https://www.dailydoseofds.com/

DailyDoseofDS.com

#1) Basic responder

1) Basic Responder

deepseek

Large language
model

=] um |o______ Rasponse |
= . | response

. J

A human guides the entire flow.

The LLM is just a generic responder that receives an input and produces an

output. It has little control over the program flow.

#2) Router pattern

2) Router Pattern

.

deepsecelk
Router LLM

| !
—= tm - - - - = e o 'y ot | s e 7
—— l response

(N J

A human defines the paths/functions that exist in the flow.
The LLM makes basic decisions on which function or path it can take.

31

https://www.dailydoseofds.com/

#3) Tool calling

DailyDoseofDS.com

-
Ny a@
Query

User

3) Tool Calling

response

wum

g }“ = [deepseek]“ =

)

.

deepseek
um

' Tool

2/

A human defines a set of tools the LLM can access to complete a task.

LLM decides when to use them and also the arguments for execution.

#4) Multi-agent pattern

<

=/

A manager agent coordinates multiple sub-agents and decides the next steps

iteratively.

A human lays out the hierarchy between agents, their roles, tools, etc.

32

https://www.dailydoseofds.com/

The LLM controls execution flow, deciding what to do next.

#5S) Avtonomous pattern

DailyDoseofDS.com

\

S) Autonomous Pattern

Final
response

Validator Agent

The most advanced pattern, wherein, the LLM generates and executes new code

independently, effectively acting as an independent AI developer.

33

https://www.dailydoseofds.com/

DailyDoseofDS.com

AL Agents
Projects

34

https://www.dailydoseofds.com/

#1) Agentic RAG

DailyDoseofDS.com

Build a RAG pipeline with agentic capabilities that can dynamically fetch context

from different sources, like a vector DB and the internet.

| Agentic RAG Workflow powered by Qwen 3

A[, o
’ ‘&oo join.DailyDoseofDS.com

Available tools Orchestrated with

>
llk.-J G
= N
Qdrant vector) Firecraw! @
D8 tool Web search tool Paturn
A

2) | Fetch context

\
|
I
| context
|
|
I
|

response

o) ®
L, @ — — — — — P | @ SR § 2 T || - = = e e e - ~
User Query @) |
1,' Gen;mte |
insights |
|
|
A\
—_———— <. —_e— = -
Output Generate
response response

powered by Qwen3

Response generator Agent

Tech stack:

e CrewAl for Agent orchestration.
e Firecrawl for web search.

e LightningAl's LitServe for deployment.
Workflow:

The Retriever Agent accepts the user query.

context and generate insights.

The Writer Agent generates a response.

It invokes a relevant tool (Firecrawl web search or vector DB tool) to get

35

https://www.dailydoseofds.com/

DailvDoseofDS.com

Let's implement it!

#1) Set up LLM

CrewAl seamlessly integrates with all popular LLMs and providers. Here's how

we set up a local Qwen 3 via Ollama:

e server.py

from crewai import Crew, Agent, Task, LLM
t litserve as 1s
FirecrawlWebSearchTool, VectorDBSearchTool

ticRAGAPI(ls.LitAPI):

jef setup(self, device): @"
—
ﬂ

1im LLM(model="ollama/qwen3")

#2) Define Research Agent and Task

This Agent accepts the user query and retrieves the relevant context using a

vectorDB tool and a web search tool powered by Firecrawl.

Again, put this in the LitServe setup() method:

@ server.py
n crewai import Crew, Agent, Task, LLM i 4 @

t litserve as 1ls
tools i rt FirecrawlWebSearchTool, VectorDBSearchTool

setup(self, device):

somared by Gaend

¢ Firecraw! Gdrant vector

1lm LLM(model="ollama/ Web search tool 08 tool

researchexr_agent Agent(x

ecrawlWebSearchTool(), VectorDBSearchTool],

researcher_task Task(d y ch about: {qt

* Research Agent

36

https://www.dailydoseofds.com/

DailvDoseofDS.com

#3) Define Writer Agent and Task

Next, the Writer Agent accepts the insights from the Researcher Agent to
generate a response.

Yet again, we add this in the LitServe setup method:

crewal i rt Crew, Agent, Task,
t litserve as 1s
1 tools I t FirecrawlWebSearchTool, VectorDBSearchTool

I(1ls.LitAPI):

, device):
1lm LLM(model="o0llama/qwen3"

researcher_agent = Agent(

researcher_task
writer_agent Agent (

writer_task = Task(

t=writer_agent)

Writer Agent

#4) Set up the Crew

Once we have defined the Agents and their tasks, we orchestrate them into a

crew using CrewAl and put that into a setup method.

Check this code:

37

https://www.dailydoseofds.com/

¥ server.py

1 crewai i
t litserve as 1s

tools

I(ls.
f setup(self,
1lm LLM(model

researcher_asgent

researcher_task =

t Crew,

t Firecr

Agent, Task, LLM
awlWebSearchTool,

itAPI):

device):

"ollama/

Agent (x

DailvDoseofDS.com

VectorDBSearchTool

archer

VectorDBSearchTool]

earch about:

t=researcher_asgent)

writer_agent

writer_task = Task(desc

a
selLr.crew =

Crew riter_adent],

ask])

Define Crew

#5) Decode request

With that, we have orchestrated the Agentic RAG workflow, which will be
executed upon an incoming request. Next, from the incoming request body, we

extract the user query. Check the highlighted code below:

@ server.py
T(1ls.L1

) (self, device):

je_request(self, request):
return request["query"]

Extract query

t(self, query):
ixn self.crew.kickoff(inputs={"quexry": query})

_response(self, output):
1 {"output": output}

38

https://www.dailydoseofds.com/

#6) Predict

DailvDoseofDS.com

We use the decoded user query and pass it to the Crew defined earlier to generate

a response from the model. Check the highlighted code below:

@ server.py

tup(self,

.LitAPI):

device):

»_request(self,
1 request["query"]

(self, query):

1 self.crew.kickoff(inputs={"query":

»_response(self,

1 {"output": output}

#7) Encode response

request):

Generate
response

query})

output):

Here, we can post-process the response & send it back to the client.

Note: LitServe internally invokes these methods in order: decode_request »

predict » encode_request. Check the highlighted code below:

@ server.py

1 I(.LitAPI):
(self, device):

est(self,
request["query"]

(self, query):

f.crew.kickoff(inputs

ponse(self,
n {"output":

output)
output}

request):

{"quexry": quexry})

" Send response

39

https://www.dailydoseofds.com/

DailvDoseofDS.com

#8) With that, we are done with the server code.

Next, we have the basic client code to invoke the API we created using the

requests Python library. Check this:

Invoke the predict

method/endpoint

response requests.post(F" {SERVES son=payload)

The code is available here:

https://www.dailydoseofds.com/p/deploy-a-gw

en-3-agentic-rag/

40

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/deploy-a-qwen-3-agentic-rag/
https://www.dailydoseofds.com/p/deploy-a-qwen-3-agentic-rag/

DailyDoseofDS.com
#2) Voice RAG Agent

Real-time voice interactions are becoming more and more popular in Al apps.

Learn how to build a real-time Voice RAG Agent, step-by-step.

Real time Voice Agent, powered by Cartesia

- ;
User Audio input SR
Transcribe
0 Tronscribe | A\ AssemblyAl| _ __ _,
D 1 Transcription platform
|
i Yo L Y e e (400
|
1 (2 - 3
| Embed : Store
S
.
User o s
0 " _ Swbed | embedding | SO
ocumencts a | model S VectorDB
|
RetrievedI
6 \
context +
g

et | B
= Context
Prompt

Speech ;
1 Synthesis |
«- | Cartesia |2 | {82 |
Speech Synthesis Platform ' . Query
Audio Output Gemma 3

Llamalndex

Tech stack:

e CartesiaAl for SOTA text-to-speech
e AssemblyAl for speech-to-text
e Llamalndex to power RAG

e Livekit for orchestration

Workflow:

41

https://www.dailydoseofds.com/

DailvDoseofDS.com

e Listens to real-time audio
e Transcribes it via AssemblyAl
e Uses your docs (via Llamalndex) to craft an answer

e Speaks that answer back with Cartesia
Let’s implement this!
#1) Set up environment and logging

This ensures we can load configurations from .env and keep track of everything

in real time.

Check this out:

=your_cartesia_api_key

logging K RL=your_livekit_url
rt os I IT_API Yeyour_livekit_api_key
your_livekit_api_secret

| dotenv Ipoxt load_dotenv ASSEMBLYAI _AF EY=your_assemblyai_api_key

load_dotenv() | €— e —

logger logging.getlLogger("voice-assistant")
logger.setlLevel(logging.INFO)

PERSIST_DIR "./chat-engine-storage"

#2) Setup RAG

This is where your documents get indexed for search and retrieval, powered by

Llamalndex. The agent's answers would be grounded to this knowledge base.

42

https://www.dailydoseofds.com/

DailvDoseofDS.com

= Llamalndex

lms.ollama

1lama_index,embeddings . huggingface ggingFaceEmbedding

storage_context

index load_index

#3) Setup Voice Activity Detection

We also want Voice Activity Detection (VAD) for smooth real-time

experience—so we'll “prewarm” the Silero VAD model. This helps us detect when

someone is actually speaking. Check this out:

t logging ” VAD
1ivekit.agents 1 t JobProcess Volce activity detection
livekit.plugins import silero

logger logging.getlLogger("voice-

yrewarm(proc: JobProcess):

proc.userdatal["vad"] silero.VAD.load()
logger.info("Silero VAD model prewarmed and

#4) The VoicePipelineAgent and Entry Point

This is where we bring it all together. The agent:

43

https://www.dailydoseofds.com/

1. Listens to real-time audio.
2.
3.
4.

Transcribes it using AssemblyAl.
Craft an answer with your documents via Llamalndex.

Speaks that answer back using Cartesia.

Check this out:

logging
JobContext
VoicePipelineAgent

livekit.agents
livekit.agents.pipeline

yint(ctx: JobContext):

chat_context ChatContext().append(

: "
stem”,

stant, who respo

chat_engine index.as_chat_engine(chat_mode=ChatMode.CO

ctx.connect(auto_subscribe=AutoSubscribe.AUDI IN

ctx.wait_for_participant()

{participant.identity}

participant
Logger.info(f"Partic

ipant oined!

agent VoicePipelineAgent(
ctx.proc.userdata["vad"],
assemblyai.STT(),

=1lama_index.LLM(chat
cartesia.TTS(

engine=chat_engine),

nodel 0N i

agent.start(ctx.room, participant)

agent.say("Hey there!

#5) Run the app

DailvDoseofDS.com

‘I\ AssemblyAl |

Tramscription platform

v

Liamalndex

)

44

https://www.dailydoseofds.com/

DailvDoseofDS.com

Finally, we tie it all together. We run our agent with, specifying the prewarm

function and main entrypoint.

000

livekit.agents in t WorkexrOptions, cli

name ¥ main

yrint("Starting voice agent...")

cli.run_app(
WorkerOptions (
yoint_fnc=entxrypoint,
_fnc=prewarm,

That’s it—your Real-Time Voice RAG Agent is ready to roll!

The code is available here:

https://www.dailydoseofds.com/p/building-a-r

eal-time-voice-rag-agent/

45

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/building-a-real-time-voice-rag-agent/
https://www.dailydoseofds.com/p/building-a-real-time-voice-rag-agent/

DailyDoseofDS.com
#3) Multi-agent Flight finder

Build a flight search pipeline with agentic capabilities that can parse natural

language queries and fetch live results from Kayak.

FlightFinder Pro: Find best flights

! =
Tools Website i : 8mw!l'b¢5"$|: Toolstack
ools | NI 8 MECH v b 2
a2 -) &umensﬁoh
A 8

All matching
flights

Querg Fllgg‘;zi:!'ch

Summarizer

Travel options
with pricing,
booking links etc. |=

Tech stack:

e CrewAllnc for multi-agent orchestration
e BrowserbaseHQ's headless browser tool

e Ollama to locally serve DeepSeek-R1
Workflow:

e Parse the query (SF to New York on 21st September) to create a Kayak
search URL

e Visit the URL and extract top 5 flights

e For each flight, go to the details to find available airlines

e Summarize flight info
Let’s implement this!

46

https://www.dailydoseofds.com/

DailvDoseofDS.com

#1) Define LLM

CrewAl nicely integrates with all the popular LLMs and providers out there.

Here's how you set up a local DeepSeek using Ollama:

eoeo

crewai

Tim = LLM(
model="ollama/deepseek-r1",
ase ://localhost:11434"

#2) Flight Search Agent

This agent mimics a real human searching for flights by browsing the web,
powered by Browserbase’s headless-browser tool and can look up flights on sites
like Kayak.

Flight Search
Agent

ask, Agent

search_task

t=flights_acent,

#3) Summarisation Agent

47

https://www.dailydoseofds.com/

DailvDoseofDS.com

After retrieving the flight details, we need a concise summary of all available

options.
This is where our Summarization Agent steps in to make sense of the results for
easy reading.

o0 e

from crewai import Task, Asgent

summarize_asgent Agent (
role="Summarization Agent",

-)))) Summarizer
goal="Summarise text while preserving key details and clarity.", Agent

backstory="""I specialize in summarizing content efficiently,
extracting essential information while maintaining cohexrence."""
allow_delegation=False,
)
summarization_task Task(
description="Summarise the raw search results",
expected_output="""
Here are our top 5 picks from SF to New York on 21st September 2024:
1. Delta Airlines:
- Departure: 21:35
- Arrival: 03:50
- Duration: 6 hours 15 minutes
- Price: $125
Booking: [Delta Airlines](https://www.kayak.com/)

wan

agent=flights_asgent,

Now that we have both our agents ready, it's time to understand the tools

powering them.

1. Kayak tool

2. Browserbase tool

Let's write their code one-by-one.

48

https://www.dailydoseofds.com/

DailvDoseofDS.com

Browserbase's
headless
browser tool

Website /‘
KIALY A KRN @ N

#4) Kayak tool

A custom Kayak tool to translate the user input into a valid Kayak search URL

(FYI Kayak is a popular fight and hotel booking)

t tool

t Optional

tr, return_date: Optional[st

, destination: st

destination} o

departure
ation

ghts/{departure}-{des

return_date:

return_date}"

kayak kayak_seaxch

49

https://www.dailydoseofds.com/

#5) Browserbase Tool

DailvDoseofDS.com

The flight search agent uses the Browserbase tool to simulate human browsing
and gather flight data.

To be precise it automatically navigates the Kayak website and interacts with the

web page. Check this out:

B Browserbase

crewai.tools port tool
playwright.sync_api i rt sync_playwright

m html2text port html2text

| time import sleep

1("Browsert

f browserbase(

#6) Setup Crew

nun

Loads a URL using a headless webbrowser

:param url: The URL to load
:xeturn: The text content of the page
sync_playwright() playwright:
browser playwright.chromium.connect_ovexr_cdp (
"wss://connect.browserbase.com?apikKey="
+ os.environ["BROWSERBASE_API_KEY"]
)
context browser.contexts([0]
page context.pages([©]
page.goto(url)

sleep(25)
content = html2text(page.content())
browser.close()

content

Once the agents and tools are defined, we orchestrate them using CrewAl.

Define their tasks, sequence their actions, and watch them collaborate in real

time. Check this out:

50

https://www.dailydoseofds.com/

DailvDoseofDS.com

crew = Crew(

agents=[flights_agent, summarize_asgent],

tasks=[search_task, search_booking_providers_task],
max_xpm=100,
verbose=True,

planning=True,

Note: here the ‘planning = True” is using the planning pattern we discussed in the 5

Agentic Al Design Patterns above.
#7) Kickoff and results

Finally, we feed the user’s request (departure city, arrival city, travel dates) into

the Crew and let it run:

51

https://www.dailydoseofds.com/

DailyDoseofDS.com

crew.kickoff(
inputs={

ights from SF to New York on Nov

Powered by Browserbase and CrewAl

Search for Flights

Flight Results

Streamlit Ul
To make this accessible, we wrapped the entire system in a Streamlit interface.

It's a simple chat-like UI where you enter your flight details and see the results in

real time.

Check this out:

52

https://www.dailydoseofds.com/

DailvDoseofDS.com

Browserbase

Configuration x

Powered by Browserbase and CrewAl

AP| Koy stored successfully!

Search for Flights

ity

Search Fiights
Search comploted!

Flight Results

Here are our top S picks from New York to San Francisco on March 28, 2025;

L American Alrlines:

The code is available here:

https://blog.dailydoseofds.com/p/hands-on-a-

multi-agent-flight-finder/

53

https://www.dailydoseofds.com/
https://blog.dailydoseofds.com/p/hands-on-a-multi-agent-flight-finder/
https://blog.dailydoseofds.com/p/hands-on-a-multi-agent-flight-finder/

DailyDoseofDS.com

#4) Financial Analyst

Build an AT agent that fetches, analyzes & generates insights on stock market

trends, right from Cursor or Claude Desktop.

MCP powered Financial Analyst [:X; ioatpeseonscom

MCP Host MCP Server
™~ @ .
; 2. C t : : :
_____ > soas
‘- . 5 Response II:
_____ Corsor MM 223
Developer
Context/n 3 Tool Calls

Result 1
1

AN \ v
Tech stack g b \ . Plot YTD stock | |

M AN gain of Tesla

< 8 : A
I
@ @a ! Final plot
1

\

1
|
|

A

Code
executor

\ Agent 3

Tech stack:

e CrewAl for multi-agent orchestration
e Ollama to locally serve DeepSeek-R1 LLM
e Cursor as the MCP host

Workflow:

e The user submits a query.
e The MCP agent kicks off the financial analyst crew.
e The crew conducts research and creates an executable script.

e The agent runs the script to generate an analysis plot.

54

https://www.dailydoseofds.com/

DailvDoseofDS.com

Let’s implement this!

#1) Setup LLM

We will use Deepseek-R1 as the LLM, served locally using Ollama.

crewai

1lm = LLM(
model="o1llama/ ek-xr1:7b",

url="http://localhost:11434"

Let's setup the Crew now

#2) Query Parser Agent

This agent accepts a natural language query and extracts structured output using

Pydantic. This guarantees clean and structured inputs for further processing!

LN N

\

. Guery

DydanFlu 1 BaseModel, Field parser
crewal Agent, Task N

Agent 1
Structured output schema Kook

sOutput(BaseModel):
ired output for the qu
symbols: list[stx] Field(
timeframe: str Field(
action: sti Field(

"List of stock ticker symbols")
"Time period")

Action to be performed")

query._pa : t Agent (

ydantic=QueryAnalysisOutput,
t=query_parser_asent,

55

https://www.dailydoseofds.com/

DailvDoseofDS.com

#3) Code Writer Agent

This agent writes Python code to visualize stock data using Pandas, Matplotlib,

and Yahoo Finance libraries.

o000
‘ 2,

crewai I Agent, Task Code
Writer
code_writer_asent Agent(Agent 2

~ializ

produ

code_writer_task Task(

code_writer_asgent,

#4) Code Executor Agent

This agent reviews and executes the generated Python code for stock data

visualization.

It uses the code interpreter tool by CrewAl to execute the code in a secure

sandbox environment.

crewal Agent, Task Code
crewai_tools t CodeInterpretexTool executor

Agent 3
n_agent Agent(

code_execution_task

ecution_

56

https://www.dailydoseofds.com/

DailvDoseofDS.com

#5) Setup Crew and Kickoff

We set up and kick off our financial analysis crew to get the result shown below!

#6) Create MCP Server

Now, we encapsulate our financial analyst within an MCP tool and add two more

tools to enhance the user experience.

e save_code -> Saves generated code to local directory

e run_code_and_show_plot -> Executes the code and generates a plot

f

@ Model Context Protocol

57

https://www.dailydoseofds.com/

DailyDoseofDS.com

#7) Integrate MCP server with Cursor

Go to: File > Preferences - Cursor Settings > MCP - Add new global MCP
server. In the JSON file, add what's shown below

Server name

Server path

The code is available here:
https://www.dailydoseofds.com/p/hands-on-bu

ilding-an-mcp-powered-financial-analyst/

58

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-building-an-mcp-powered-financial-analyst/
https://www.dailydoseofds.com/p/hands-on-building-an-mcp-powered-financial-analyst/

DailyDoseofDS.com

#5S) Brand Monitoring System

Build a multi agent brand monitoring app that scraps web mentions and

produces insights about a company.

|Brand Monitoring Agentic Workflow

2 3 (X Crew
Scrmpe X) Xposts &) _ Ve = e
 EE > Qe | &8 > \
| L‘ﬁ‘(l_'ﬁ Agent Writar Agent |
: Scrape 2 @) Tnstagrom Craw !
Instagrom b | &= () i ﬂ . |
| | Analyst Agant writar Agant | |
I _ S :
Scrape 2) 3) UnkedIn Crew a
—] UnkedIn e Unkedtn | — O S ﬂ Rl E Brand
g > > e > > > i
| | Analyst Agent Writer Agent i
| cerape 2 3 [YouTube Craw) !
YouTub: 2 3
Brand name)l B - = > sz‘u:u - LR - ﬂ - = ’|
: ‘lulnpt Agant Writer Agent |
I
11 Fovpe ~ 2 3 Web Crew
Webpoges ,} Web o ﬂ]
S I AR e -
|7 | Analyst Agent Writer Agent
\ J
powared by bright Orchestrated with
Tech stack:

e Bright Data to scrape data at scale
e CrewAl for orchestration

e Ollama to serve DeepSeek locally
Workflow:

e Use Bright Data to scrape brand mentions across X, Instagram, YouTube,
websites, etc.
e Invoke platform-specific Crews to analyze the data and generate insights.

e Merge all insights to get the final report.

Let's implement this!

59

https://www.dailydoseofds.com/

DailvDoseofDS.com

#1) Scraping tool

To monitor a brand, we must scrape data across various sources—X, YouTube,

Instagram, websites, etc.
Thus, we'll first gather recent search results from Bright Data's SERP API.

See this code:

20 0® @ book_writer.py

I crewai.tools import BaseTool
1 pydantic import BaseModel, Field
requests

Input schema for Brig

title: st Field(..., desc opic of the book to write

» Brigh

name:

description: str "Tool to search Google and retries the results."
args_schema: Typel[BaseModell] BrightDataWebSearchToolInput

run(self, title):

host : superproxy.io'
port

username '<Get from brightdata.com in SERP API>'
password <Get from brightdata.com in SERP API>'

proxies

'htep': f'http: // {usexname)}:{passwordi@{host}:{poxt}’,
f'http: //{usexrname}:{password}@a{host}:{poxrt}'

url f'https: google.com/s ch?q={title}&brd_json=1&num=500"
response requests.get(url, proxies, verif Lse)

response.json()['organic'

#2) Platform-specific scraping function

60

https://www.dailydoseofds.com/

DailvDoseofDS.com

The above output will contain links to web pages, X posts, YouTube videos,

Instagram posts, etc.

To scrape those sources, we use Bright Data's platform-specific scrapers.

Check this code:

ris(input_urls: list[str], initial_params: dict,

data|

scraping_type:

aping {scraping_type)} for {len(input_urls)} urls")

url "https: // .brightdata.com/datasets/v3/triggex"

headers

os.getenv('BRIGHTDATA_API_KEY')}",

}
data [{"uxl":uxl} r url in input_urls]

scraping_response requests.post(url,
s=headers,
initial_params,
ERD)

snapshot_id scraping_response.json()['snapshot_id']

output_url f'https://api.brightdat

output_response requests.get(output_url,
heade headers,

pé {"format": "json"})

output_response.json()

#3) Set up DeepSeek R1 locally
We'll serve R1 locally through Ollama.
To do this:

e First, we download it locally.
e Next, we define it with the CrewAlI's LLM class.

Here's the code:

Send scraping
request

ot/ {snapshot_id}"

Retrieve
output

61

https://www.dailydoseofds.com/

DailyDoseofDS.com

@ Command line

ollama pull deepseek-rl

¢ brand_monitoring.py

crewai import LLM

1lm LLM(model="o01lama/deepseek-r1")

#4) Crew Setup
We will have multiple Crews, one for each platform (X, Instagram, YouTube, etc.)
Each Crew will have two Agents:

e Analysis Agent > It analyses the scraped content.

e Writer Agent = It produces insights from the analysis.

Below, let's implement the X Crew!

- S ™

X posts & __ “-’ : ﬁ ', : — \V, @
Q threads > &) . > 4 A

Analyst Agent | 1 Writer Agent
. - v

4 iy
[. Instagram Crew

Instagram, —) D —» ,’i‘“
posts il

Analyst Agent | 2 , Writer Agent
\ - v

62

https://www.dailydoseofds.com/

DailvDoseofDS.com

#5) X Analyst Agent

This Agent analyzes the posts scraped by Bright Data and extracts key insights. It
is also assigned a task to do so.

Here's how it's done:

o000 ® brand_monitoring.py

<]

crewai I Agent, Task

sis_agent Agent(role="X Analys e Ana(BSt Agent

#6) X Writer Agent

The Agent takes the output of the X analyst agent and generates insights.

Here's the code:

63

https://www.dailydoseofds.com/

DailvDoseofDS.com

brand_monitoring.py

crewai ort Agent, Task

writer_agent Agent(role='

writer_task

}'s mention.

output format

T was a paid pa

agent=writer_agent)

#7) Create a Flow
Finally, we use CrewAlI Flows to orchestrate the workflow:

e We start the Flow by using the Scraping tool.
e Next, we invoke platform-specific scrapers.

e Finally, we invoke platform-specific Crews.

Check this out:

64

https://www.dailydoseofds.com/

200 @ brand

crewai.flow
pydantic

ct()

DailvDoseofDS.com

monitoring.py

Flow, listen, start
BaseModel

(Flow[BrandMonitoringState]):

(self):

search_tool = BrightDataWebSearchTool() Scrape URLs of brand mentions

f.state.search_result search_tool(self.state.brand_name)

en(scrape_data)

X_posts

X_crew

X_reponse

1t for ata_a nalyse(self):

scrape_urls(self.state.search_response.x_urls,
X_params, "X")

XCrew().crew()

= X_crew.kickoff(inputs) ":X_posts, ScrapeXposts
3 Lf.state.brand_name})

YouTube_transcripts scrape_urls(self,state.search_response.YouTube_urls,

YouTube_params, "X") Scrape YOUTUbe

YouTube_crew YouTubeCrew().crew() wdeos
YouTube_reponse YouTube_crew.kickoff(inputs={"X_data":YouTube_posts,

"brand_nai : self.state.brand_name})

#8) Streamlit UI and Kick off the Flow

Finally, we wrap the app in a clear Streamlit interface for interactivity and run

the Flow.

Check the final outcome:

65

https://www.dailydoseofds.com/

Brand Monitoring Settings
Company/Brand Name

Hugging Face

Total Search Results

25

Done!

DailvDoseofDS.com

Brand Monitoring powered by
& data

™" LinkedIn Mentions

Yann LeCun’s Brief Mention of Hugging Face

B Nazneen Rajani's In-Depth Analysis of Al Risks with Hugging Face

& X/Twitter Mentions

B invitation to Explore the Smartest Model
Exciting Partnership Announcement with AlatMeta

B Joyful Work Culture at Hugging Face

@ Web Mentions

B Exciting Release of Llama 4 at Hugging Face

B Technical Guidance for Hugging Face Integrations

You're now ready to monitor any brand, track all mentions, and generate insights

about a company.

The code is available here:

https://www.dailydoseofds.com/p/hands-on-bu

ild-a-multi-agent-brand-monitoring-system/

66

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-build-a-multi-agent-brand-monitoring-system/
https://www.dailydoseofds.com/p/hands-on-build-a-multi-agent-brand-monitoring-system/

DailyDoseofDS.com

#6) Multi-agent Hotel Finder

Build an Agentic workflow that parses a travel query, fetches live flights and

hotel data from Kayak, and summarizes the best options.

HotelFinder Pro: Find best hotels

Website Browserbase's Toolstack
Tools [mnm &}K \ headless J
@'

All matching
Hotels

Summarizer
Agent

Query HOtf\lng\?nh

Final options
with pricing,
booking links etc.

Tech stack:

e CrewAl for multi-agent orchestration
e Browserbase’s headless browser tool

e Ollama to locally serve DeepSeek-R1
Workflow:

e Parse the query (location, dates etc.) to create a Kayak search URL
e Visit the URL and extract top 5 flights
e For each hotel, find pricing and more info

e Summarize hotel info

67

https://www.dailydoseofds.com/

DailyDoseofDS.com

Let’s implement this!

#1) Define LLM

CrewAl nicely integrates with all the popular LLMs and providers out there!

Here's how you set up a local DeepSeek using Ollama:

#2) Hotel Search Agent

This agent mimics a real human searching for hotels by browsing the web. It's

powered by browserbase's headless-browser tool and can look up hotels on sites
like Kayak.

68

https://www.dailydoseofds.com/

DailvDoseofDS.com

CRH

Hotel Search
Agent

#3) Summarisation Agent

After retrieving the hotel details, we need a concise summary of all available

options.

This is where our Summarization Agent steps in to make sense of the results for

easy reading.

Check this out:

69

https://www.dailydoseofds.com/

DailvDoseofDS.com

o0 9®

crewai import Task, Agent

summarize_agent Agent (
Summarizer
farll Agent
yrmation", S
that can s
1l d gation=
Llm=load_1lm(),

)
summarization_task Task(

21ls in New York (September 21

King, Double

Now that we have both our agents ready, it's time to understand the tools

powering them.
1. Kayak tool
2. Browserbase tool

Let's write their code one-by-one.

70

https://www.dailydoseofds.com/

DailyDoseofDS.com

Website]‘(F_T-j Browserbase's
i Q ‘ 11 headless
munu V4 [é)—/\ \ browser tool
‘ALJ \ b |

#4) Kayak tool
A custom Kayak tool to translate the user input into a valid Kayak search URL.

(FYI Kayak is a popular for hotel and fight booking)

typing (Optional _ ~a I ; b

o 3

L("Kayak Hotel Tool")
(

location: tr, check_in_date: tr, check_out_date: , num_adults:

/{location}/{check_in_date}/{check_out_date}"

kayak_hotels kayak_hotel_search

71

https://www.dailydoseofds.com/

DailvDoseofDS.com

#5) Browserbase Tool

The hotel search agent uses the Browserbase tool to simulate human browsing

and gather hotel data.

To be precise it automatically navigates the Kayak website and interacts with the

web page.

Check this out:

B Browserbase

crewai.tools import tool

playwright.sync_api import sync_playwright
n html2text 1 ‘T html2text

time import sleep

atool("Browserbase tool")
browserbase(uxrl: stx):

nun

Loads a URL using a headless webbrowser

:paxram uxrl: The URL to load
:xreturn: The text content of the page
with sync_playwright() as playwright:
browser playwright.chromium.connect_over_cdp(
"wss://connect.browserbase.com?apiKey="
+ os.environ["BROWSERBASE_API_KEY"]
)
context browser.contexts[0]
page = context.pages([0]
page.goto(url)

sleep(25)
content = html2text(page.content())
browser.close()

turn content

72

https://www.dailydoseofds.com/

DailyDoseofDS.com

#6) Setup Crew

Once the agents and tools are defined, we orchestrate them using CrewAl.

Define their tasks, sequence their actions, and watch them collaborate in real
time! Check this out:

00

crewal

crew Crew(

ts=[hote agent, s

h_task, search g_providers_task],
verbose=True
planning=True

load_11im(),

#7) Kickoff and results

Finally, we feed the user’s request (location, dates etc.) into the Crew and let it
run! Check this out:

ee®

crew.kickoff(

Powered by Browserbase and CrewAl

Search for Hotels

Hotel Results

73

https://www.dailydoseofds.com/

DailyDoseofDS.com

Streamlit UI
To make this accessible, we wrapped the entire system in a @Streamlit interface.

It’s a simple chat-like UI where you enter your location and other details and see

the results in real time!
Check this out:

Browserbase

Configuration “

Powered by Browserbase and CrewAl

Beowserbase APt Kay stored

soccesmfully) Search for Hotels

Skytroe tokyo japan

Loor of A2

Search Hoteis

Sesrch completed:

Hotel Results

The code is available here:

https://github.com/patchy631/ai-engineering-

hub/tree/main/hotel-booking-crew

74

https://www.dailydoseofds.com/
https://x.com/streamlit
https://github.com/patchy631/ai-engineering-hub/tree/main/hotel-booking-crew
https://github.com/patchy631/ai-engineering-hub/tree/main/hotel-booking-crew

#37) Multi-agent Deep Researcher

DailyDoseofDS.com

ChatGPT has a deep research feature. It helps you get detailed insights on any

topic. Learn how you can build a 100% local alternative to it.

I Multi-Agent Deep Researcher Workflow X ieinbaiydeseofds.com

(h
Generate |
analysis

\ .!_, Plinkup|| 2
User Query Web Search Tool Rcsntarch
= / notes
@ Web search Agent
i
|
_ Final |
e — response |
- with |
citations |
|
* | Notes
@ | | not approved
Generate | : &)
|
| |
I |
| |
I I —@
< N\ AR i <P AP —_—@ =
Notes —
Approved
Writer Agent @ Analysis

|
(3| Analyse
\4

A 23 ’N'__

(@4

=
\{/ AL D !J
"\

Analyst Agent
|
I
I

Orchestrated with

Tech stack:

Linkup platform for deep web research
CrewAl for multi-agent orchestration
Ollama to locally serve DeepSeek
Cursor as MCP host

Workflow:

User submits a query
Web search agent runs deep web search via Linkup

Research analyst verifies and deduplicates results

Technical writer crafts a coherent response with citations

75

https://www.dailydoseofds.com/

DailyDoseofDS.com

Let’s implement this!
#1) Setup LLM

We'll use a locally served DeepSeek-R1 using Ollama.

#2) Define Web Search Tool

We'll use Linkup platform's powerful search capabilities, which rival Perplexity
and OpenAl, to power our web search agent. This is done by defining a custom

tool that our agent can use.

76

https://www.dailydoseofds.com/

DailvDoseofDS.com

2% linkup

Deep Web Research

#3) Define Web Search Agent

The web search agent gathers up-to-date information from the internet based on

user query. The linkup tool we defined earlier is used by this agent.

Web Search Agent
V7 LN
aE)
WA

#4) Define Research Analyst Agent

77

https://www.dailydoseofds.com/

DailvDoseofDS.com

This agent transforms raw web search results into structured insights, with
source URLs. It can also delegate tasks back to the web search agent for

verification and fact-checking.

=)

Analyst Agent

analys

#5) Define Technical Writer Agent

It takes the analyzed and verified results from the analyst agent and drafts a

coherent response with citations for the end user.

Technical Writer

#6) Setup Crew

78

https://www.dailydoseofds.com/

DailyDoseofDS.com

Finally, once we have all the agents and tools defined we set up and kickoff our

deep researcher crew.

The Role of Small Language Models (SLMs) in
Enterprise Al

1. Cost Efficiency

#7) Create MCP Server

Now, we'll encapsulate our deep research team within an MCP tool. With just a

few lines of code, our MCP server will be ready.

Let's see how to connect it with Cursor.

79

https://www.dailydoseofds.com/

DailvDoseofDS.com

200

mcp.sexrver.fastmep import FastMCP
agents import run_research

mcp = FastMCP("crew_research")
amcp.tool()

crew_research(query: str) — str:

nnn

Run CrewAl-based deep-research system for given user query.

gS.

query (str): The research query or question.

Returns:

str: The research response from the CrewAl pipeline.

nun

run_research(query)

name " __main__":
mcp.xun(transport="stdio") @ Model Context Protocol

#8) Integrate MCP server with Cursor

Go to: File > Preferences - Cursor Settings > MCP - Add new global MCP

server

In the JSON file, add what's shown below

80

https://www.dailydoseofds.com/

DailyDoseofDS.com

settings

MCP Servers

Server name

Server path

env vars

Done! Your deep research MCP server is live and connected to Cursor.

MCP Servers + Add new global MCP server

® crew_research -

Server Running |

The code is available here:

https://www.dailydoseofds.com/p/hands-
on-mcp-powered-deep-researcher/

81

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-mcp-powered-deep-researcher/
https://www.dailydoseofds.com/p/hands-on-mcp-powered-deep-researcher/

DailyDoseofDS.com
#8) Human-like Memory for Agents

If a memory-less AI Agent is deployed in production, every interaction with the
Agent will be a blank slate. Learn how to build an AT Agent with human-like

memory to solve this.

| Human-like Memory for Agents [:X
.

Jjoin.DailyDoseofDS.com

N\

3
b
v ¥
= - -=-=>
User Query Generate
Powered by Qwen 3 _
1 Final
;has access to respo“se

3 & zep
- | Memory

- -
-
-~
”‘ \‘
—’ ‘N
- -~

. Jod , A IS T
L
Level 1 L
EPISODES Documents Conversations JSONs Row data

v
Level 2 ’ Entities &
ENTITIES = W oz relationships
|

Level 3

A 4
COMMUNITIES 2 22 o8 P /\%’f o custers®
=L St ——x 7 their summaries
3

Tech stack:

e Zep Al for the memory layer to Al agent
e Microsoft AutoGen for agent orchestration

e Ollama to locally serve Qwen3
Workflow:

e User submits a query

82

https://www.dailydoseofds.com/

DailyDoseofDS.com

e Agent saves the conversation and extracts facts into memory
e Agent retrieves facts and summarizes

e Uses facts and history for informed responses
Let’s implement this!
#1) Setup LLM

We'll use a locally served Qwen 3 via Ollama. Check this out:

DailyDoseofDS.com

©®% SetuplLLM

ollama pull qwen3:4b

@ Im_config.py

config_list [

#2) Initialise Zep Client

We're leveraging zep_ai's Foundational Memory Layer to equip our Autogen

agent with genuine task-completion capabilities.

'\\ DailyDoseofDS.com

®® % |nitialize Zep Client

zep_cloud.client imj t Zep

zep Zep(api_key="YOUR_ZEP_API_KEY")

83

https://www.dailydoseofds.com/

DailvDoseofDS.com

#3) Create User Session

Create a Zep client session for the user, which the agent will use to manage

memory. A user can have multiple sessions. Here’s how it looks:

i DailyDoseofDS.com

Create User Session

t uuid
zep_cloud.memory 1 FactRatingInstruction, FactRatingExamples

user_name "Cathy"

user_id user_name + str(uuid.uuid4())[:4]

session_id tr(uuid.uuidd()) Zep Fact Rating Instructions

ct mul

rarely influence futur

fact_rating_examples

iction=FactRatingInstruction(Zep Add

act_rating_instruction,

examples=fact_rating_examples, Session

)y
)

zep.memory.add_session(user_id=user_id, session_id=session_id)

#4) Define Zep Conversable Agent

Our Zep Memory Agent builds on Autogen's Conversable Agent, drawing live

memory context from Zep Cloud with each user query.
It remains efficient by utilizing the session we just established.

Here's how it comes together:

84

https://www.dailydoseofds.com/

200

autogen
zep_cloud.client
zep_cloud

memoxy
context

¢ agentpy

ConversableAgent, Agent
Zep
sage, Memory

self,

name: st
system_messase:
1lm_config: dict

y.session_id
ep_client zep_cl
.min_fact_rating = m

self,
message: Union[Dict,
sendexr: Agent,
recipient: Agent,
silent:

gent se

sender

content message[" ent™]
content:

elf.zep_c nt.memory.add(

)

message

" Fe if: 1d Ip e s m
f.zep_client.memory.get(s

g LN b

ystem_me

f.update,_
i .original_

user
client.memoxy.add(
id=self.zep_se

ic id,
ages=[Message(rol

on

#5) Setting up Agents

3 ge to the user. A

Define Zep Conversable Agent

zep_persist_assi

1. Persist Assistant
Message

y Zep, """

DailvDoseofDS.com

stant_messa

str(message)

content)]

2. Update System

Message

> 3. Persist User Message

le=user_name,

user_content)]

We initialize the Conversable Agent and a Stand-in Human Agent to manage

chat interactions.

Here's the setup:

85

https://www.dailydoseofds.com/

DailyDoseofDS.com

~ DailyDoseofDS.com

agent Ze:) sableAgent (

1. Zep
Conversable
onfig_list}, Agent

2. Stand-in Human
Agent

#6) Handle Agentic Chat
The Zep Conversable Agent steps in to create a coherent, personalized response.

It seamlessly integrates memory and conversation. Here’'s how it works:

_ DailyDoseofDS.com
®®% Handle Agentic Chat

result agent.initiate_chat(

use

86

https://www.dailydoseofds.com/

DailvDoseofDS.com

#7) Streamlit Ul

We created a streamlined Streamlit UI to ensure smooth and simple interactions
with the Agent.

Here’s what it looks like:

/ AP| Configuration

Clears

™ Zep Memory Agent

b4

AGZ

Please enter your Zep AP key to
continue!

#8) Visualize Knowledge Graph

We can interactively map users' conversations across multiple sessions with Zep
Cloud's UI.

This powerful tool allows us to visualize how knowledge evolves through a graph.

Take a look:

87

https://www.dailydoseofds.com/

DailvDoseofDS.com

Real time
Knowledge Graph

. meeting

. meeting preparation

O Akshay Pachaar

deep work session

The code is available here:

https://www.dailydoseofds.com/p/hands-on-bu

ild-an-ai-agent-with-human-like-memory/

88

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-build-an-ai-agent-with-human-like-memory/
https://www.dailydoseofds.com/p/hands-on-build-an-ai-agent-with-human-like-memory/

DailyDoseofDS.com

#9) Multi-agent Book Writer

Build an Agentic workflow that writes a 20k-word book from a 3-5 word book

title.
|' ° °
|Book Writer Agentic Workflow
s R
& Firecrawl Outline Book Outline
START Wek Scrapina tool rew = ("
24 1 @/
r' e ading 4 : -==>
Book Topic 2
m.m.n Aaent Cutline Agent B | Orchestrated with
Wdlﬂ'z;‘vgnllu\ l
; . :
\4 A\ Y
A Firecrawl wsib;::’t(‘:!r:;: &) Firecrawl w&f‘t:‘:tgjv) Firecrawl ,,,,C,’i‘t‘;‘:‘é:;ﬁ,
Web Loraping toul Web Scrapins tool ek Scraplng toot
T T | B
iy
Resoarchar Saent Weitar Anent Virlter Basnt Resaarcher Agent wiriter Agent
4 a4 '@
+ ' *4'
A A)
Chapter-1 @ Chapter-2 @ Chapter-N @
| I 1
| | |
____________ e e e
+ 5_ Coambing
‘ |'.'o%° join.DailyDasesfDS.com
. ",
Tech stack:
e Firecrawl for web scraping.
e CrewAl for orchestration.
e Ollama to serve Qwen 3 locally.
e LightningAl for development and hosting
Workflow:

89

https://www.dailydoseofds.com/
https://x.com/LightningAI

DailyDoseofDS.com

e Using Firecrawl, Outline Crew scrapes data related to the book title and
decides the chapter count and titles.
e Multiple writer Crews work in parallel to write one chapter each.

e Combine all chapters to get the book.
Let's implement this!
#1) Scraping tool - SERP API
Books demand research. Thus, we'll use Firecrawl's SERP API to scrape data.
Tool usage:

e Outline Crew - to research the book title and prepare an outline.

e Writer Crew - to research the chapter title and write it.

See this code:

920

https://www.dailydoseofds.com/

DailvDoseofDS.com

209 @ book_writer.py ‘ Firecrawl

typing import Type

crewai.tools import BaseTool

pydantic import BaseModel, Field
0s

. requests

1 1 > Model) :
""" Tnput ema for Fi archTool.
title: str Field(..., des tion="Title of the book.")

nn

s Fi Tool ol):

name: Y "FirecrawlWebSearchTool"

description: str "Tool to retrieve Google results via Firecrawl."
args_schema: Type[BaseModel] = FirecrawlWebSearchToolInput

_run(self, title: str) — dict:

url = "https://api.firecrawl.dev/vl/seaxrch"

headers = {
"Authorization": f"Bearer {os.getenv('FIRECRAWL_API_KEY')}",
"Content-Type": "application/json"

}

payload = {"quexy": title, "limit": 5, "lang": "en"}

response requests.post(url, json=payload, head headers)

response.json()

#2) Setup Qwen 3 locally
We'll serve Qwen 3 locally through Ollama. To do this:

e First, we download it locally.
e Next, we define it with the CrewAlI's LLM class.

91

https://www.dailydoseofds.com/

DailyDoseofDS.com

Command Line

ollama pull gwen3:4b

¢ book_writer.py v

rom crewai import LLM

1lm = LLM(model="ollama/qwen3:4b")

#3) Outline Crew
This Crew has two Agents:

e Research Agent > Uses the Firecrawl scraping tool to scrape data related
to the book's title and prepare insights.

e Outline Agent » Uses the insights to output total chapters and titles as
Pydantic output.

92

https://www.dailydoseofds.com/

oen

crewai i
Outline(Ba
total_chapter

titles: list[st

research_agent

Use Firecrawl
deep research
tool

research_task

outline_agent

OQutlineCrew

#4) Writer Crew

This Crew has two Agents:

Agent,

\2’1‘ [FirecrawlWebSearchTool()])

Task(d

DailvDoseofDS.com

@ book_writer.py

Crew, Process, Task

& Pydantic output
for outline

Agent (

rch the and

"o

t it. A

xpert

collect inform

wun and have
win
’

backstoxry You are ar

iption="""Prepare insights and key points that

to create an outline for a book"""

ed_output="Insights about { ;7)) Il

research_agent)

'Book Outline Writer",
e

1erate outline of book about {topi

"""You are an expert and

have a deep undexrstanding of it""")

"Write outline for a book about {t

output="Total chapter and titles",

= outline_agent,
output_pydantic=0utline)

[research_agent, outline_asgent],
[research_task, outline_task],
s=Process.sequential)

e Research Agent - Uses the Firecrawl Scraping tool to scrape data related

to a chapter's title and prepare insights.

e Write Agent - Uses the insights to write a chapter.

Check this code:

93

https://www.dailydoseofds.com/

200 @ book_writer.py

| crewai | t Agent, Crew, Process, Task

haO
title:
content:

G Pydantic output
for chapter

search_agent Agent(role

1

Use Firecrawl
deep research
tool

research_task Task(descriptior

writer_agent

writer_task

writer_agent,
ydantic=Chapter)

OutlineCrew

Crew(agent

s=Process.sequential)

#5) Create a Flow

DailvDoseofDS.com

Chapter
Writer Crew

tandin

earchTool()])

C
\ZH\ [Firecrawlw

[research_agent, writer_asgent],
[research_task, writer_task],

We use CrewAl Flows to orchestrate the workflow.

First, the outline method invokes the Outline Crew, which:

e research the topic using the scraping tool.

e returns the total number of chapters and the corresponding titles.

This is implemented below:

94

https://www.dailydoseofds.com/

200 @ book_ writer.py

crewai.flow Flow,

Bo
topic: onomy in 2025"
total_chapters: int c
titles: list[str] []
chapters: list[Chaptex] = []

yokFlow(Flow[BookState]):

tline(self):
outline = (OutlineCrew()
.crew()
.kickoff(inputs
)
.state.total_chapters
self.state.titles

#6) Save the book

listen,

¢

'topic":

DailvDoseofDS.com

start

Structured
flow state

Start by generating the
outline based on Topic
using the Outline Crew

self.state.topic})

outline.pydantic.total_chapters
outline.pydantic.titles

Once all Writer Crews have finished execution, we save the book as a Markdown

file.

Check this code:

95

https://www.dailydoseofds.com/

DailvDoseofDS.com

00 @ book writer.py

from crewai.flow import Flow, listen, start
class BookFlow(Flow[BookStatel]):
astart()

def generate_outline(self):

alisten(generate_outline)
async def generate_chapters(self):

alisten(generate_chapters) Save all Chapters

def save_book(self): to Markdown
with open("book.md", "w") as f:
for chapter in self.state.chapters:
f.write("# " + chapter.title + "\n")
f.write(chaptexr.content + "\n")

#7) Kickoff the Flow
Finally, we run the Flow.

e First, the Outline Crew is invoked. It utilizes the Firecrawl scraping tool to
prepare the outline.

e Next, many Writer Crews are invoked in parallel to write one chapter each.

96

https://www.dailydoseofds.com/

DailyDoseofDS.com

This workflow runs for ~2 minutes, and we get a neatly written book about the
specified topic—"Astronomy in 2025." Here's the book our Agentic workflow

wrote:

Proviow book.md %

Chapter 1: Introduction to Astronomy
in 2025 "

The code is available here:

https://blog.dailydoseofds.com/p/building-a-m
ulti-agent-book-writer/

97

https://www.dailydoseofds.com/
https://blog.dailydoseofds.com/p/building-a-multi-agent-book-writer/
https://blog.dailydoseofds.com/p/building-a-multi-agent-book-writer/

DailyDoseofDS.com

#10) Multi-agent Content Creation System

Build an Agentic workflow that turns any URL into social media posts and

auto-schedules them via Typefully.

lContent creation workflow using Motia

~N

~

-
@ @ ¢y Firecrawl
" " invoke | gin = [scrape endpoint to
=5 workflow scrape the blog
i : Invoke Agents with
Usay Glog link l @ scraped content
i I S PR e RS
A A4
<
' LinkedIn Agent
|
|
| 0
|
: Orchestrated
: with Motia ©) ' Banarits
Y
l —
: i? \ LinkedIn
| 224 post
I : Schedule post -
| ® po e g)
| Send for
I human v
| review
____________________ (o Wl
%% ans le Motia
o)
;’\og% join.DailyDoseofDS.com S Workbench)
~ J
Tech stack:

e Motia as the unified backend framework
e Firecrawl to scrape web content

e Ollama to locally serve Deepseek-R1 LLM

98

https://www.dailydoseofds.com/
https://x.com/motiadev
https://x.com/firecrawl_dev
https://x.com/ollama

DailyDoseofDS.com
Workflow:

e User submits URL to scrape
e Firecrawl scrapes content and converts it to markdown
e Twitter and LinkedIn agents run in parallel to generate content

e Generated content gets scheduled via Typefully
Let’s implement this:
Steps are the fundamental building blocks of Motia.
They consist of two main components:

e The Config object: It instructs Motia on how to interact with a step.

e The handler function: It defines the main logic of a step.

Check this out:

929

https://www.dailydoseofds.com/

DailvDoseofDS.com

config = { / Type of step
'type': 'event', / Unique identifier
'name': 'Simple Step', : _
'subscribes': ['input-step'], g EiSENS 20/t0pics

‘emits': ['output-step'], = Topics for next step
'flows': ['sample-flow']

> Group multiple steps

Handles the main logic of a step

handlexr(input, context):
Sends new events to other steps
it context.emit({'topic': 'output-step', 'data': {}})

trace_id = context.trace_id Track flow of operations

context.state.get(trace_id, 'key') Manage data persistence

context.logger.info("Step completed") Records important info

Emits Subscribes Emits Subscribes
Start—p | Step 1 (Topic-1)[—®|(Topic-1) (Topic-2)|—|(Topic-2) Step 3 |—» End
Step 2

With that understanding in mind, let's start building our content creation

workflow.
#1) Entry point (API)

We start our content generation workflow by defining an API step that takes in a

URL from the user via a POST request.

Check this out:

100

https://www.dailydoseofds.com/

DailvDoseofDS.com

api.step.py

API

config {
"type': 'api',
'name’': 'ContentGenerationAPI',
'description': 'Triggers content generation from URL',
'path': '/generate-content',
'method': 'POST',
'emits': ['scrape-article'],
'"flows': ['content-generation']

def handlex(req, context):
await context.emit({
'topic': 'scrape-article',
'data': {
'requestId': context.traceld,
'url': reql['body']['uxl']

'status': 200,

"body': {
'message': 'Content generation started',
'requestId': context.traceld,
'url': reql'body'l['url'],

= e tus I proces Sing] Workflow initiated

successfully

#2) Web scraping

This step scrapes the article content using Firecrawl and emits the next step in

the workflow.

Steps can be connected together in a sequence, where the output of one step

becomes the input for another.

Check this out:

101

https://www.dailydoseofds.com/

DailvDoseofDS.com

00 @ scrape.step.py

from firecrawl import FirecrawlApp (j\ FlrecraWI

config = {
'type': 'event',
'name': 'ScrapeArticle',
'description': 'Scrapes content using Firecrawl',
'subscribes': ['scrape-article'l],
'emits': ['generate-content'],
"input': Scrapelnput,
'"flows': ['content-generation']

def handler(input, context):
context.logger.info(f"Scraping article: {input['uxl']}")

app FirecrawlApp(api_key=FIRECRAWL_API_KEY)
scrapeResult = await app.scrape_uxrl(input['uxl'])

await context.emit({
'topic': 'generate-content',
'data': {
'requestId': input['requestId'],
'url': str(input['uxl'l),
'"title': scrapeResult.metadata.get('title'),
'content': scrapeResult.markdown,

Sent as input
to the next step

#3) Content generation

The scraped content gets fed to the X and LinkedIn agents that run in parallel

and generate curated posts.

We define all our prompting and Al logic in the handler that runs automatically

when a step is triggered.

Check this out:

102

https://www.dailydoseofds.com/

DailvDoseofDS.com

@ generate.step.py

import asyncio
rom ollama import AsyncClient

config {
"type': 'event',
‘name': 'GenerateContent',
'description': 'Generates social media content',
'subscribes': ['generate-content'],
'emits': ['schedule-content'],
'input': GeneratelInput,

'flows': ['content-generation']

Both agents invoked

jef handlex(input, context): in Para"el
twitter_resp, linkedin_resp = await asyncio.gathex(
AsyncClient().chat(model="deepseek-r1",
messages=[{
'role': 'user',
'content': twitter_prompt
F1)

AsyncClient().chat(model="deepseek-xr1",
messages=[{
'role': 'user',
'content': linkedin_prompt
)

it context.emit({
'topic': 'schedule-content',
'data': { 'content': {twitter_content, linkedin_content} }

})

#4) Scheduling

After the content is generated we draft it in Typefully where we can easily review

our social media posts.

Motia also allows us to mix and match different languages within the same

workflow providing great flexibility.

Check this typescript code:

103

https://www.dailydoseofds.com/

DailvDoseofDS.com

Ts schedule.step.ts

{ EventConfig, Handlers } from 'motia'
from 'axios'

const config: EventConfig = {
type: 'event',
name: 'Schedule',
description: 'Schedules social media posts using Typefully',
subscribes: ['schedule-content'],
emits: [],
flows: ['content-generation']

const handler: Handlexrs['Schedule']l = async (input,{logger}) = {

const typefullyHeaders = {

'X-API-KEY': ‘"Bearexr S{TYPEFULLY_API_KEY}",
'"Content-Type': 'application/json'

axios.post('https://api.typefully.com/vl/drafts/"', {
content: twitterTweets.join('\n\n\n\n'),
schedule_date: twitterScheduleTime
}, { headers: typefullyHeaders })

it axios.post('https://api.typefully.com/vl/drafts/"', {
content: input.content.linkedin.post,
schedule_date: linkedinScheduleTime,
}, { headexrs: typefullyHeaders })

logger.info(Content scheduling completed successfully!\n’)

After defining our steps, we install required dependencies using ‘npm install’ and

run the Motia workbench using ‘'npm run dev' commands.

Check this out:

104

https://www.dailydoseofds.com/

DailyDoseofDS.com

Install dependencies
a dev =——3 Run development server

> . python modules/bin/activate & motia dev

fActivating Python environment. ..

Y Open http://loc: st 130 to open workbench ¥

Motia workbench provides an interactive UI to help build, monitor and debug

our flows.

With one-click you can also deploy it to the cloud!

The code is available here:

https://blog.dailydoseofds.com/p/build-a-multi

—agent—content—creation/

105

https://www.dailydoseofds.com/
https://blog.dailydoseofds.com/p/build-a-multi-agent-content-creation/
https://blog.dailydoseofds.com/p/build-a-multi-agent-content-creation/

DailyDoseofDS.com

#11) Documentation Writer Flow

Build an Agentic workflow that generates full project documentation from just a
GitHub repo URL.

| Documentation Writer Agentic Workflow

~

Planning Crew

File Reod Directory Website

= = == 4 tool Read tool Search tool
—i ll = Il k= €= =i

e o
Generated
docs - e Y,
- Orchestrated with

Doc Reviewer Overview Writer m
A o0 Agent Agent

o
;§§° Jjoin.DailyDoseofDS.com \ J
\

f — R
d LQ Documentation
START — Plan
File Read tool Directory Read tool
O) - @
== % R $sEH0 | ---»
Clone 7 f‘ =) 1 Structured
repo outline
GitHub Fepe Code Explorer Doc Planner
L Agent Agent |
|
Documentation Crew !
I N |
: = — =1 Execute
' > =, lan
END =\ |
|
)

Tech stack:

e CrewAl for multi-agent orchestration

e Ollama to locally serve DeepSeek-R1 LLM
Workflow:

e User specifies GitHub repo
e Planning crew creates documentation plan
e Documentation crew writes documentation according to plan

e Generated docs get saved to local directory

Let’s implement this!

106

https://www.dailydoseofds.com/

#1) Setup LLM

We will use Deepseek-R1 as the LLM, served locally using Ollama.

| crewai i

tm():

ollama/

L="http

#2) Define Pydantic schema

We define the following pydantic schemas for robust structured outputs.

DailvDoseofDS.com

This ensures data validation and integrity before generating the documentation

files. Check this code:

pathlib port Path
pydantic import BaseModel

el):

s a documentation

description: str
prerequisites:
examples: list[str]

goal: str

(BaseModel) :

ientation plan outline"""

overview: str
docs: list[DocItem]

projec
repo_path:
docs: list{str]

107

https://www.dailydoseofds.com/

DailvDoseofDS.com

#3) Planning Crew
This crew oversees strategy for the outline via:

e Code explorer agent -> Analyzes codebase for key components, patterns
and relationships.
e Doc planner agent -> Creates outline based on codebase analysis as

pydantic output.

Check this out:

“Planning Crew

crewai img t Agent, Task, Crew

crewai_tools t (
DirectoryReadTool, FileReadTool

code_explorer Agent(rol

analyze_code - iption="Analyz

ed_output="

doc_plannexr

Experx I anl

[DirectoryReadTool(),

create_plan
i_output
t=doc_planner,
output_pydantic=DocPlan)

planning_crew Crew(agents=[code_explorer, doc_planner],
s=[analyze_code, create_plan])

#4) Documentation Crew
This crew writes and reviews the documentation via:

e Doc writer agent -> Generates a high-level draft based on the planned

outline.

108

https://www.dailydoseofds.com/

DailvDoseofDS.com

e Doc reviewer agent -> Reviews the draft for consistency, accuracy and

completeness.

Check this out:

crewai port Agent, Task, Crew
crewai_tools rt
DirectoryReadTool, FileReadTool, WebsiteSearchTool

doc_writer Agent(rol
ols=[DirectoryReadTool()
WebsiteSearchTool(webs

draft_doc Task(de on="Write do

agent=doc_writer)

doc_reviewer Agent(rol

entatio :
FileReadTool()])

review_doc Task(description="R
cted_output
doc_reviewer,
ardrail=check_mermaid_syntax)

documentation_crew Crew(agents=[doc_writer, doc_reviewer],
tasks=[draft_doc, review_doc])

#5) Create Documentation Flow
After setting up our crews, we create the main workflow that:

e Clones the GitHub repo
e Plans and saves the outline
e Generates documentation based on the outline

e Saves final docs to local directory

Check this code:

109

https://www.dailydoseofds.com/

DailvDoseofDS.com

subprocess

crewai.flow.flow i rt Flow, listen, start

ow(Flow[DocumentationState]):

Clone GitHub repo

" e G

subprocess.run([1 self.state.project_url, self.state.repo_path])
return self.state

isten(clone_xepo) :
(self): Plan doc outline

"""Create entation outline

result planning_crew.kickoff(inputs={ :1f.state.repo_path})
result
ten(plan_docs) Save outline
ain(self, plan):
5 the planned outline fox
‘ ("docs/plan "
f.write(plan.raw)

ten(plan_docs) Generate docs
e_docs(self, plan):

and save final d directory"""
plan.pydantic.doc

result documentation_crew.kickoff(inputs={ })

/{title}", : Save final docs
f.write(result.raw)

f.state.docs

#6) Kickoff the flow

Finally, when we have everything ready, we kick off our documentation flow with
the GitHub repo URL.

Check this out:

110

https://www.dailydoseofds.com/

DailvDoseofDS.com

000

repo_url = "https://github.com/usexrname/xrepo"

flow = CreateDocumentationFlow()

flow.kickoff(inputs={"project_uxrl": repo_url})

1D:

B Running: clone_repo

Flow Method Step
8 Completed: clone_r
8 Running: plan_docs

epo

The code is available here:

https://github.com/patchy631/ai-engineering-

hub/tree/main/documentation-writer-flow

111

https://www.dailydoseofds.com/
https://github.com/patchy631/ai-engineering-hub/tree/main/documentation-writer-flow
https://github.com/patchy631/ai-engineering-hub/tree/main/documentation-writer-flow

#12) News Generator

DailyDoseofDS.com

The app takes a user query, searches the web for it, and turns it into a

well-crafted news article, with citations.

4 e
AI News Generator! i
Agent 1 Agent 2
Q 3' i Rsearcl\
Aokt
[) streanlit Appw -g_
,- | .
T T News Article
Task 1 Task 2
& Analysis & editing
Powered by Cohere's CommandR-7B

Tech stack:

e Cohere ultra-fast Command R 7B as LLM

e CrewAl for multi-agent orchestration
Workflow:
We'll have two agents in this multi-agent app:

Research analyst agent:

112

https://www.dailydoseofds.com/

DailyDoseofDS.com

e Accepts a user query.
e Uses the Serper web search tool to fetch results from the internet.

e Consolidates the results.
Content writer agent:
e Uses the curated results to prepare a polished, publication-ready article.
Let’s implement this:
#1) Setup
Create a .env file for their corresponding API keys:

e Cohere API key
e Serper API key

Next, setup the LLM and web search tool as follows:

env-vars

#2) Senior Research Analyst Agent

113

https://www.dailydoseofds.com/

DailyDoseofDS.com

The web-search agent takes a user query and then uses the Serper web search

tool to fetch results from the internet and consolidate them. Check this out:

This is the research task that we assign to our senior research analyst agent, with

description and expected output.

#3) Content writer agent

114

https://www.dailydoseofds.com/

DailyDoseofDS.com

The role of content writer is to use the curated results and turn them into a

polished, publication-ready news article .

This is how we describe the writing task with all the details and expected output:

#4) Setup Crew

115

https://www.dailydoseofds.com/

DailyDoseofDS.com

And we're done!

Just build a crew and kick it off!

t

Tosk 1 Tosk 2

Web search Writing
& Anolysis & editing

The code is available here:

https://www.dailydoseofds.com/p/hands-on-bu
ilding-a-multi-agent-news-generator/

116

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-building-a-multi-agent-news-generator/
https://www.dailydoseofds.com/p/hands-on-building-a-multi-agent-news-generator/

	How to make the most out of this book and your time?
	Table of contents

	
	
	
	
	
	AI Agents
	
	What is an AI Agent?
	Agent vs LLM vs RAG
	
	LLM (Large Language Model)
	RAG (Retrieval-Augmented Generation)
	Agent

	Building blocks of AI Agents
	1) Role-playing
	2) Focus/Tasks
	3) Tools
	#3.1) Custom tools
	#3.2) Custom tools via MCP
	4) Cooperation
	5) Guardrails
	6) Memory

	5 Agentic AI Design Patterns
	#1) Reflection pattern
	#2) Tool use pattern
	#3) ReAct (Reason and Act) pattern
	#4) Planning pattern
	#5) Multi-Agent pattern

	
	5 Levels of Agentic AI Systems
	#1) Basic responder
	#2) Router pattern
	#3) Tool calling
	#4) Multi-agent pattern
	#5) Autonomous pattern

	
	
	AI Agents Projects
	#1) Agentic RAG
	
	#2) Voice RAG Agent
	#3) Multi-agent Flight finder
	
	#4) Financial Analyst
	
	#5) Brand Monitoring System
	
	
	#6) Multi-agent Hotel Finder
	
	#7) Multi-agent Deep Researcher
	#8) Human-like Memory for Agents
	
	#9) Multi-agent Book Writer
	#10) Multi-agent Content Creation System
	#11) Documentation Writer Flow
	
	#12) News Generator
	

