
FREE

AI AGENTS

2025 EDITION

THE ILLUSTRATED
GUIDEBOOK

Avi Chawla & Akshay Pachaar
D a i l y D o s e o f D S . c o m

Daily Dose of
Data Science

DailyDoseofDS.com

How to make the most out of
this book and your time?

The reading time of this book is about 8 hours. But not all chapters will be of
relevance to you. This 2-minute assessment will test your current expertise and
recommend chapters that will be most useful to you.

Scan the QR code below or open this link to start the assessment. It will only take
2 minutes to complete.

https://bit.ly/agents-assessment

1

https://www.dailydoseofds.com/
https://bit.ly/agents-assessment

DailyDoseofDS.com

Table of contents

AI Agents... 4

What is an AI Agent?...5

Agent vs LLM vs RAG...8

LLM (Large Language Model)..8

RAG (Retrieval-Augmented Generation)...9

Agent.. 9

Building blocks of AI Agents...10

1) Role-playing...10

2) Focus/Tasks.. 11

3) Tools.. 11

#3.1) Custom tools.. 12

#3.2) Custom tools via MCP...17

4) Cooperation...21

5) Guardrails...22

6) Memory... 22

5 Agentic AI Design Patterns...24

#1) Reüection pattern..25

#2) Tool use pattern...25

#3) ReAct (Reason and Act) pattern... 26

#4) Planning pattern... 28

#5) Multi-Agent pattern...29

5 Levels of Agentic AI Systems..30

#1) Basic responder..31

#2) Router pattern...31

#3) Tool calling...32

#4) Multi-agent pattern...32

#5) Autonomous pattern..33

2

https://www.dailydoseofds.com/

DailyDoseofDS.com

AI Agents Projects...34

#1) Agentic RAG...35

#2) Voice RAG Agent..41

#3) Multi-agent Flight ûnder.. 46

#4) Financial Analyst...54

#5) Brand Monitoring System.. 59

#6) Multi-agent Hotel Finder...67

#7) Multi-agent Deep Researcher..75

#8) Human-like Memory for Agents...82

#9) Multi-agent Book Writer... 89

#10) Multi-agent Content Creation System...98

#11) Documentation Writer Flow...106

#12) News Generator.. 112

3

https://www.dailydoseofds.com/

DailyDoseofDS.com

AI Agents

4

https://www.dailydoseofds.com/

DailyDoseofDS.com

What is an AI Agent?
Imagine you want to generate a report on the latest trends in AI research. If you
use a standard LLM, you might:

1. Ask for a summary of recent AI research papers.
2. Review the response and realize you need sources.
3. Obtain a list of papers along with citations.
4. Find that some sources are outdated, so you reûne your query.
5. Finally, a܀昀er multiple iterations, you get a useful output.

This iterative process takes time and eûort, requiring you to act as the
decision-maker at every step.

Now, let9s see how AI agents handle this diûerently:

A Research Agent autonomously searches and retrieves relevant AI research
papers from arXiv, Semantic Scholar, or Google Scholar.

5

https://www.dailydoseofds.com/

DailyDoseofDS.com

ï A Filtering Agent scans the retrieved papers, identifying the most relevant

ones based on citation count, publication date, and keywords.

ï A Summarization Agent extracts key insights and condenses them into an

easy-to-read report.

ï A Formatting Agent structures the ûnal report, ensuring it follows a clear,
professional layout.

6

https://www.dailydoseofds.com/

DailyDoseofDS.com

Here, the AI agents not only execute the research process end-to-end but also
self-reûne their outputs, ensuring the ûnal report is comprehensive, up-to-date,
and well-structured - all without requiring human intervention at every step.

To formalize AI Agents are autonomous systems that can reason, think, plan,
ûgure out the relevant sources and extract information from them when needed,
take actions, and even correct themselves if something goes wrong.

7

https://www.dailydoseofds.com/

DailyDoseofDS.com

Agent vs LLM vs RAG

Let9s break it down with a simple analogy:

ï LLM is the brain.
ï RAG is feeding that brain with fresh information.
ï An agent is the decision-maker that plans and acts using the brain and the

tools.

LLM (Large Language Model)
An LLM like GPT-4 is trained on massive text data.

It can reason, generate, summarize but only using what it already knows (i.e., its
training data).

8

https://www.dailydoseofds.com/

DailyDoseofDS.com

It9s smart, but static. It can9t access the web, call APIs, or fetch new facts on its
own.

RAG (Retrieval-Augmented Generation)
RAG enhances an LLM by retrieving external documents (from a vector DB,
search engine, etc.) and feeding them into the LLM as context before generating
a response.

RAG makes the LLM aware of updated, relevant info without retraining.

Agent
An Agent adds autonomy to the mix.

It doesn9t just answer a question4it decides what steps to take:

Should it call a tool? Search the web? Summarize? Store info?

An Agent uses an LLM, calls tools, makes decisions, and orchestrates workûows
just like a real assistant.

9

https://www.dailydoseofds.com/

DailyDoseofDS.com

Building blocks of AI Agents
AI agents are designed to reason, plan, and take action autonomously. However,
to be eûective, they must be built with certain key principles in mind. There are
six essential building blocks that make AI agents more reliable, intelligent, and
useful in real-world applications:

1. Role-playing
2. Focus
3. Tools
4. Cooperation
5. Guardrails
6. Memory

Let9s explore each of these concepts and understand why they are fundamental to
building great AI agents.

1) Role-playing
One of the simplest ways to boost an agent9s performance is by giving it a clear,
speciûc role.

A generic AI assistant may give vague answers. But deûne it as a <Senior contract
lawyer,= and it responds with legal precision and context.

Why?

Because role assignment shapes the agent9s reasoning and retrieval process. The

10

https://www.dailydoseofds.com/

DailyDoseofDS.com

more speciûc the role, the sharper and more relevant the output.

2) Focus/Tasks
Focus is key to reducing hallucinations and improving accuracy.

Giving an agent too many tasks or too much data doesn9t help - it hurts.

Overloading leads to confusion, inconsistency, and poor results.

For example, a marketing agent should stick to messaging, tone, and audience
not pricing or market analysis.

Instead of trying to make one agent do everything, a better approach is to use
multiple agents, each with a speciûc and narrow focus.
Specialized agents perform better - every time.

3) Tools
Agents get smarter when they can use the right tools.

But more tools b better results.

11

https://www.dailydoseofds.com/

DailyDoseofDS.com

For example, an AI research agent could beneût from:

ï A web search tool for retrieving recent publications.
ï A summarization model for condensing long research papers.
ï A citation manager to properly format references.

But if you add unnecessary tools4like a speech-to-text module or a code
execution environment4it could confuse the agent and reduce eûciency.

#3.1) Custom tools
While LLM-powered agents are great at reasoning and generating responses,
they lack direct access to real-time information, external systems, and specialized
computations.

Tools allow the Agent to:

ï Search the web for real-time data.
ï Retrieve structured information from APIs and databases.
ï Execute code to perform calculations or data transformations.
ï Analyze images, PDFs, and documents beyond just text inputs.

12

https://www.dailydoseofds.com/

DailyDoseofDS.com

CrewAI supports several tools that you can integrate with Agents, as depicted
below:

However, you may need to build custom tools at times.

In this example, we're building a real-time currency conversion tool inside
CrewAI. Instead of making an LLM guess exchange rates, we integrate a custom
tool that fetches live exchange rates from an external API and provides some
insights.

Below, let's look at how you can build one for your custom needs in the CrewAI
framework.

Firstly, make sure the tools package is installed:

13

https://www.dailydoseofds.com/

DailyDoseofDS.com

You would also need an API key from here: https://www.exchangerate-api.com/
(it's free). Specify it in the .env ûle as shown below:

Once that's done, we start with some standard import statements:

Next, we deûne the input ûelds the tool expects using Pydantic.

14

https://www.dailydoseofds.com/
https://www.exchangerate-api.com/

DailyDoseofDS.com

Now, we deûne the CurrencyConverterTool by inheriting from BaseTool:

Every tool class should have the _run method which we will execute whenever
the Agents wants to make use of it.

For our use case, we implement it as follows:

In the above code, we fetch live exchange rates using an API request. We also
handle errors if the request fails or the currency code is invalid.

Now, we deûne an agent that uses the tool for real-time currency analysis and
attach our CurrencyConverterTool, allowing the agent to call it directly if needed:

15

https://www.dailydoseofds.com/

DailyDoseofDS.com

We assign a task to the currency_analyst agent.

Finally, we create a Crew, assign the agent to the task, and execute it.

Printing the response, we get the following output:

Works as expected!

16

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3.2) Custom tools via MCP
Now, let9s take it a step further.

Instead of embedding the tool directly in every Crew, we9ll expose it as a reusable
MCP tool4making it accessible across multiple agents and ûows via a simple
server.

First, install the required packages:

 We9ll continue using ExchangeRate-API in our .env ûle:

We9ll now write a lightweight server.py script that exposes the currency converter
tool. We start with the standard imports:

Now, we load environment variables and initialize the server:

17

https://www.dailydoseofds.com/

DailyDoseofDS.com

Next, we deûne the tool logic with @mcp.tool():

This function takes three inputs4amount, source currency, and target
currency4and returns the converted result using the real-time exchange rate
API.

To make the tool accessible, we need to run the MCP server. Add this at the end
of your script:

18

https://www.dailydoseofds.com/

DailyDoseofDS.com

This starts the server and exposes your convert_currency tool at:
http://localhost:8081/sse.

Now any CrewAI agent can connect to it using MCPServerAdapter. Let9s now
consume this tool from within a CrewAI agent.

First, we import the required CrewAI classes. We9ll use Agent, Task, and Crew
from CrewAI, and MCPServerAdapter to connect to our tool server.

Next, we connect to the MCP tool server. Deûne the server parameters to
connect to your running tool (from server.py).

Now, we use the discovered MCP tool in an agent:

This agent is assigned the convert_currency tool from the remote server. It can
now call the tool just like a locally deûned one.

19

https://www.dailydoseofds.com/
http://localhost:8081/sse

DailyDoseofDS.com

We give the agent a task description:

Finally, we create the Crew, pass in the inputs and run it:

Printing the result, we get the following output:

20

https://www.dailydoseofds.com/

DailyDoseofDS.com

4) Cooperation
Multi-agent systems work best when agents collaborate and exchange feedback.

Instead of one agent doing everything, a team of specialized agents can split tasks
and improve each other9s outputs.

Consider an AI-powered ûnancial analysis system:

ï One agent gathers data
ï another assesses risk,
ï a third builds strategy,
ï and a fourth writes the report

Collaboration leads to smarter, more accurate results.

The best practice is to enable agent collaboration by designing workûows where
agents can exchange insights and reûne their responses together.

21

https://www.dailydoseofds.com/

DailyDoseofDS.com

5) Guardrails
Agents are powerful but without constraints, they can go oû track. They might
hallucinate, loop endlessly, or make bad calls.

Guardrails ensure that agents stay on track and maintain quality standards.

Examples of useful guardrails include:

ï Limiting tool usage: Prevent an agent from overusing APIs or generating
irrelevant queries.

ï Setting validation checkpoints: Ensure outputs meet predeûned criteria
before moving to the next step.

ï Establishing fallback mechanisms: If an agent fails to complete a task,
another agent or human reviewer can intervene.

For example, an AI-powered legal assistant should avoid outdated laws or false
claims - guardrails ensure that.

6) Memory
Finally, we have memory, which is one of the most critical components of AI
agents.

22

https://www.dailydoseofds.com/

DailyDoseofDS.com

Without memory, an agent would start fresh every time, losing all context from
previous interactions. With memory, agents can improve over time, remember
past actions, and create more cohesive responses.

Diûerent types of memory in AI agents include:

ï Short-term memory 3 Exists only during execution (e.g., recalling recent
conversation history).

ï Long-term memory 3 Persists a܀昀er execution (e.g., remembering user
preferences over multiple interactions).

ï Entity memory 3 Stores information about key subjects discussed (e.g.,
tracking customer details in a CRM agent).

For example, in an AI-powered tutoring system, memory allows the agent to
recall past lessons, tailor feedback, and avoid repetition.

23

https://www.dailydoseofds.com/

DailyDoseofDS.com

5 Agentic AI Design Patterns
Agentic behaviors allow LLMs to reûne their output by incorporating
self-evaluation, planning, and collaboration!

The following visual depicts the 5 most popular design patterns employed in
building AI agents.

24

https://www.dailydoseofds.com/

DailyDoseofDS.com

#1) Reûection pattern

The AI reviews its own work to spot mistakes and iterate until it produces the
ûnal response.

#2) Tool use pattern

25

https://www.dailydoseofds.com/

DailyDoseofDS.com

Tools allow LLMs to gather more information by:

ï Querying a vector database
ï Executing Python scripts
ï Invoking APIs, etc.

This is helpful since the LLM is not solely reliant on its internal knowledge.

#3) ReAct (Reason and Act) pattern

ReAct combines the above two patterns:

ï The Agent reûects on the generated outputs.
ï It interacts with the world using tools.

A ReAct agent operates in a loop of Thought ³ Action ³ Observation, repeating
until it reaches a solution or a ûnal answer. This is analogous to how humans
solve problems:

26

https://www.dailydoseofds.com/

DailyDoseofDS.com

Note: Frameworks like CrewAI primarily use this by default.

To understand this, consider the output of a multi-agent system below:

As shown above, the Agent is going through a series of thought activities before
producing a response.

This is the ReAct pattern in action!

27

https://www.dailydoseofds.com/

DailyDoseofDS.com

More speciûcally, under the hood, many such frameworks use the ReAct
(Reasoning and Acting) pattern to let LLM think through problems and use tools
to act on the world .

For example, an agent in CrewAI typically alternates between reasoning about a
task and acting (using a tool) to gather information or execute steps, following
the ReAct paradigm .

This enhances an LLM agent9s ability to handle complex tasks and decisions by
combining chain-of-thought reasoning with external tool use like in this ReAct
implementation from scratch.

#4) Planning pattern

Instead of solving a task in one go, the AI creates a roadmap by:

ï Subdividing tasks
ï Outlining objectives

This strategic thinking solves tasks more eûectively.

Note: In CrewAI, specify `planning=True` to use Planning.

28

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/ai-agents-crash-course-part-10-with-implementation/#introduction
https://www.dailydoseofds.com/ai-agents-crash-course-part-10-with-implementation/#introduction

DailyDoseofDS.com

#5) Multi-Agent pattern

ï There are several agents, each with a speciûc role and task.
ï Each agent can also access tools.

All agents work together to deliver the ûnal outcome, while delegating tasks to
other agents if needed.

29

https://www.dailydoseofds.com/

DailyDoseofDS.com

5 Levels of Agentic AI Systems
Agentic AI systems don't just generate text; they can make decisions, call
functions, and even run autonomous workûows.

The visual explains 5 levels of AI agency4from simple responders to fully
autonomous agents.

30

https://www.dailydoseofds.com/

DailyDoseofDS.com

#1) Basic responder

A human guides the entire ûow.

The LLM is just a generic responder that receives an input and produces an
output. It has little control over the program ûow.

#2) Router pattern

A human deûnes the paths/functions that exist in the ûow.

The LLM makes basic decisions on which function or path it can take.

31

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3) Tool calling

A human deûnes a set of tools the LLM can access to complete a task.

LLM decides when to use them and also the arguments for execution.

#4) Multi-agent pattern

A manager agent coordinates multiple sub-agents and decides the next steps
iteratively.

A human lays out the hierarchy between agents, their roles, tools, etc.

32

https://www.dailydoseofds.com/

DailyDoseofDS.com

The LLM controls execution ûow, deciding what to do next.

#5) Autonomous pattern

The most advanced pattern, wherein, the LLM generates and executes new code
independently, eûectively acting as an independent AI developer.

33

https://www.dailydoseofds.com/

DailyDoseofDS.com

AI Agents
Projects

34

https://www.dailydoseofds.com/

DailyDoseofDS.com

#1) Agentic RAG
Build a RAG pipeline with agentic capabilities that can dynamically fetch context
from diûerent sources, like a vector DB and the internet.

Tech stack:

ï CrewAI for Agent orchestration.
ï Firecrawl for web search.
ï LightningAI's LitServe for deployment.

Workûow:

ï The Retriever Agent accepts the user query.
ï It invokes a relevant tool (Firecrawl web search or vector DB tool) to get

context and generate insights.
ï The Writer Agent generates a response.

35

https://www.dailydoseofds.com/

DailyDoseofDS.com

Let's implement it!

#1) Set up LLM

CrewAI seamlessly integrates with all popular LLMs and providers. Here's how
we set up a local Qwen 3 via Ollama:

#2) Deûne Research Agent and Task

This Agent accepts the user query and retrieves the relevant context using a
vectorDB tool and a web search tool powered by Firecrawl.

Again, put this in the LitServe setup() method:

36

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3) Deûne Writer Agent and Task

Next, the Writer Agent accepts the insights from the Researcher Agent to
generate a response.

Yet again, we add this in the LitServe setup method:

#4) Set up the Crew

Once we have deûned the Agents and their tasks, we orchestrate them into a
crew using CrewAI and put that into a setup method.

Check this code:

37

https://www.dailydoseofds.com/

DailyDoseofDS.com

#5) Decode request

With that, we have orchestrated the Agentic RAG workûow, which will be
executed upon an incoming request. Next, from the incoming request body, we
extract the user query. Check the highlighted code below:

38

https://www.dailydoseofds.com/

DailyDoseofDS.com

#6) Predict

We use the decoded user query and pass it to the Crew deûned earlier to generate
a response from the model. Check the highlighted code below:

#7) Encode response

Here, we can post-process the response & send it back to the client.

Note: LitServe internally invokes these methods in order: decode_request ³
predict ³ encode_request. Check the highlighted code below:

39

https://www.dailydoseofds.com/

DailyDoseofDS.com

#8) With that, we are done with the server code.

Next, we have the basic client code to invoke the API we created using the
requests Python library. Check this:

Done! We have deployed our fully private Qwen 3 Agentic RAG using LitServe.

The code is available here:

https://www.dailydoseofds.com/p/deploy-a-qw
en-3-agentic-rag/

40

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/deploy-a-qwen-3-agentic-rag/
https://www.dailydoseofds.com/p/deploy-a-qwen-3-agentic-rag/

DailyDoseofDS.com

#2) Voice RAG Agent
Real-time voice interactions are becoming more and more popular in AI apps.
Learn how to build a real-time Voice RAG Agent, step-by-step.

Tech stack:

ï CartesiaAI for SOTA text-to-speech
ï AssemblyAI for speech-to-text
ï LlamaIndex to power RAG
ï Livekit for orchestration

Workûow:

41

https://www.dailydoseofds.com/

DailyDoseofDS.com

ï Listens to real-time audio
ï Transcribes it via AssemblyAI
ï Uses your docs (via LlamaIndex) to cra܀昀 an answer
ï Speaks that answer back with Cartesia

Let9s implement this!

#1) Set up environment and logging

This ensures we can load conûgurations from .env and keep track of everything
in real time.

Check this out:

#2) Setup RAG

This is where your documents get indexed for search and retrieval, powered by
LlamaIndex. The agent's answers would be grounded to this knowledge base.

42

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3) Setup Voice Activity Detection

We also want Voice Activity Detection (VAD) for smooth real-time
experience4so we9ll <prewarm= the Silero VAD model. This helps us detect when
someone is actually speaking. Check this out:

#4) The VoicePipelineAgent and Entry Point

This is where we bring it all together. The agent:

43

https://www.dailydoseofds.com/

DailyDoseofDS.com

1. Listens to real-time audio.
2. Transcribes it using AssemblyAI.
3. Cra܀昀 an answer with your documents via LlamaIndex.
4. Speaks that answer back using Cartesia.

Check this out:

#5) Run the app

44

https://www.dailydoseofds.com/

DailyDoseofDS.com

Finally, we tie it all together. We run our agent with, specifying the prewarm
function and main entrypoint.

That9s it4your Real-Time Voice RAG Agent is ready to roll!

The code is available here:

https://www.dailydoseofds.com/p/building-a-r
eal-time-voice-rag-agent/

45

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/building-a-real-time-voice-rag-agent/
https://www.dailydoseofds.com/p/building-a-real-time-voice-rag-agent/

DailyDoseofDS.com

#3) Multi-agent Flight ûnder
Build a ûight search pipeline with agentic capabilities that can parse natural
language queries and fetch live results from Kayak.

Tech stack:

ï CrewAIInc for multi-agent orchestration
ï BrowserbaseHQ's headless browser tool
ï Ollama to locally serve DeepSeek-R1

Workûow:

ï Parse the query (SF to New York on 21st September) to create a Kayak
search URL

ï Visit the URL and extract top 5 ûights
ï For each ûight, go to the details to ûnd available airlines
ï Summarize ûight info

Let9s implement this!

46

https://www.dailydoseofds.com/

DailyDoseofDS.com

#1) Deûne LLM

CrewAI nicely integrates with all the popular LLMs and providers out there.
Here's how you set up a local DeepSeek using Ollama:

#2) Flight Search Agent

This agent mimics a real human searching for ûights by browsing the web,
powered by Browserbase9s headless-browser tool and can look up ûights on sites
like Kayak.

#3) Summarisation Agent

47

https://www.dailydoseofds.com/

DailyDoseofDS.com

A܀昀er retrieving the ûight details, we need a concise summary of all available
options.

This is where our Summarization Agent steps in to make sense of the results for
easy reading.

Now that we have both our agents ready, it's time to understand the tools
powering them.

1. Kayak tool
2. Browserbase tool

Let's write their code one-by-one.

48

https://www.dailydoseofds.com/

DailyDoseofDS.com

#4) Kayak tool

A custom Kayak tool to translate the user input into a valid Kayak search URL.

(FYI Kayak is a popular ûght and hotel booking)

49

https://www.dailydoseofds.com/

DailyDoseofDS.com

#5) Browserbase Tool

The ûight search agent uses the Browserbase tool to simulate human browsing
and gather ûight data.

To be precise it automatically navigates the Kayak website and interacts with the
web page. Check this out:

#6) Setup Crew

Once the agents and tools are deûned, we orchestrate them using CrewAI.

Deûne their tasks, sequence their actions, and watch them collaborate in real
time. Check this out:

50

https://www.dailydoseofds.com/

DailyDoseofDS.com

Note: here the 8planning = True9 is using the planning pattern we discussed in the 5
Agentic AI Design Patterns above.

#7) Kickoû and results

Finally, we feed the user9s request (departure city, arrival city, travel dates) into
the Crew and let it run:

51

https://www.dailydoseofds.com/

DailyDoseofDS.com

Streamlit UI

To make this accessible, we wrapped the entire system in a Streamlit interface.

It9s a simple chat-like UI where you enter your ûight details and see the results in
real time.

Check this out:

52

https://www.dailydoseofds.com/

DailyDoseofDS.com

The code is available here:

https://blog.dailydoseofds.com/p/hands-on-a-
multi-agent-ûight-ûnder/

53

https://www.dailydoseofds.com/
https://blog.dailydoseofds.com/p/hands-on-a-multi-agent-flight-finder/
https://blog.dailydoseofds.com/p/hands-on-a-multi-agent-flight-finder/

DailyDoseofDS.com

#4) Financial Analyst
Build an AI agent that fetches, analyzes & generates insights on stock market
trends, right from Cursor or Claude Desktop.

Tech stack:

ï CrewAI for multi-agent orchestration
ï Ollama to locally serve DeepSeek-R1 LLM
ï Cursor as the MCP host

Workûow:

ï The user submits a query.
ï The MCP agent kicks oû the ûnancial analyst crew.
ï The crew conducts research and creates an executable script.
ï The agent runs the script to generate an analysis plot.

54

https://www.dailydoseofds.com/

DailyDoseofDS.com

Let9s implement this!

#1) Setup LLM

We will use Deepseek-R1 as the LLM, served locally using Ollama.

Let's setup the Crew now

#2) Query Parser Agent

This agent accepts a natural language query and extracts structured output using
Pydantic. This guarantees clean and structured inputs for further processing!

55

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3) Code Writer Agent

This agent writes Python code to visualize stock data using Pandas, Matplotlib,
and Yahoo Finance libraries.

#4) Code Executor Agent

This agent reviews and executes the generated Python code for stock data
visualization.

It uses the code interpreter tool by CrewAI to execute the code in a secure
sandbox environment.

56

https://www.dailydoseofds.com/

DailyDoseofDS.com

#5) Setup Crew and Kickoû

We set up and kick oû our ûnancial analysis crew to get the result shown below!

#6) Create MCP Server

Now, we encapsulate our ûnancial analyst within an MCP tool and add two more
tools to enhance the user experience.

ï save_code -> Saves generated code to local directory
ï run_code_and_show_plot -> Executes the code and generates a plot

57

https://www.dailydoseofds.com/

DailyDoseofDS.com

#7) Integrate MCP server with Cursor

Go to: File ³ Preferences ³ Cursor Settings ³ MCP ³ Add new global MCP
server. In the JSON ûle, add what's shown below

Done! Our ûnancial analyst MCP server is live and connected to Cursor.

The code is available here:

https://www.dailydoseofds.com/p/hands-on-bu
ilding-an-mcp-powered-ûnancial-analyst/

58

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-building-an-mcp-powered-financial-analyst/
https://www.dailydoseofds.com/p/hands-on-building-an-mcp-powered-financial-analyst/

DailyDoseofDS.com

#5) Brand Monitoring System

Build a multi agent brand monitoring app that scraps web mentions and
produces insights about a company.

Tech stack:

ï Bright Data to scrape data at scale
ï CrewAI for orchestration
ï Ollama to serve DeepSeek locally

Workûow:

ï Use Bright Data to scrape brand mentions across X, Instagram, YouTube,
websites, etc.

ï Invoke platform-speciûc Crews to analyze the data and generate insights.
ï Merge all insights to get the ûnal report.

Let's implement this!

59

https://www.dailydoseofds.com/

DailyDoseofDS.com

#1) Scraping tool

To monitor a brand, we must scrape data across various sources4X, YouTube,
Instagram, websites, etc.

Thus, we'll ûrst gather recent search results from Bright Data's SERP API.

See this code:

#2) Platform-speciûc scraping function

60

https://www.dailydoseofds.com/

DailyDoseofDS.com

The above output will contain links to web pages, X posts, YouTube videos,
Instagram posts, etc.

To scrape those sources, we use Bright Data's platform-speciûc scrapers.

Check this code:

#3) Set up DeepSeek R1 locally

We'll serve R1 locally through Ollama.

To do this:

ï First, we download it locally.
ï Next, we deûne it with the CrewAI's LLM class.

Here's the code:

61

https://www.dailydoseofds.com/

DailyDoseofDS.com

#4) Crew Setup

We will have multiple Crews, one for each platform (X, Instagram, YouTube, etc.)

Each Crew will have two Agents:

ï Analysis Agent ³ It analyses the scraped content.
ï Writer Agent ³ It produces insights from the analysis.

Below, let's implement the X Crew!

62

https://www.dailydoseofds.com/

DailyDoseofDS.com

#5) X Analyst Agent

This Agent analyzes the posts scraped by Bright Data and extracts key insights. It
is also assigned a task to do so.

Here's how it's done:

#6) X Writer Agent

The Agent takes the output of the X analyst agent and generates insights.

Here's the code:

63

https://www.dailydoseofds.com/

DailyDoseofDS.com

#7) Create a Flow

Finally, we use CrewAI Flows to orchestrate the workûow:

ï We start the Flow by using the Scraping tool.
ï Next, we invoke platform-speciûc scrapers.
ï Finally, we invoke platform-speciûc Crews.

Check this out:

64

https://www.dailydoseofds.com/

DailyDoseofDS.com

#8) Streamlit UI and Kick oû the Flow

Finally, we wrap the app in a clear Streamlit interface for interactivity and run
the Flow.

Check the ûnal outcome:

65

https://www.dailydoseofds.com/

DailyDoseofDS.com

Done!

You're now ready to monitor any brand, track all mentions, and generate insights
about a company.

The code is available here:

https://www.dailydoseofds.com/p/hands-on-bu
ild-a-multi-agent-brand-monitoring-system/

66

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-build-a-multi-agent-brand-monitoring-system/
https://www.dailydoseofds.com/p/hands-on-build-a-multi-agent-brand-monitoring-system/

DailyDoseofDS.com

#6) Multi-agent Hotel Finder
Build an Agentic workûow that parses a travel query, fetches live ûights and
hotel data from Kayak, and summarizes the best options.

Tech stack:

ï CrewAI for multi-agent orchestration
ï Browserbase9s headless browser tool
ï Ollama to locally serve DeepSeek-R1

Workûow:

ï Parse the query (location, dates etc.) to create a Kayak search URL
ï Visit the URL and extract top 5 ûights
ï For each hotel, ûnd pricing and more info
ï Summarize hotel info

67

https://www.dailydoseofds.com/

DailyDoseofDS.com

Let9s implement this!

#1) Deûne LLM

CrewAI nicely integrates with all the popular LLMs and providers out there!

Here's how you set up a local DeepSeek using Ollama:

#2) Hotel Search Agent

This agent mimics a real human searching for hotels by browsing the web. It's
powered by browserbase's headless-browser tool and can look up hotels on sites
like Kayak.

68

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3) Summarisation Agent

A܀昀er retrieving the hotel details, we need a concise summary of all available
options.

This is where our Summarization Agent steps in to make sense of the results for
easy reading.

Check this out:

69

https://www.dailydoseofds.com/

DailyDoseofDS.com

Now that we have both our agents ready, it's time to understand the tools
powering them.

1. Kayak tool

2. Browserbase tool

Let's write their code one-by-one.

70

https://www.dailydoseofds.com/

DailyDoseofDS.com

#4) Kayak tool

A custom Kayak tool to translate the user input into a valid Kayak search URL.

(FYI Kayak is a popular for hotel and ûght booking)

71

https://www.dailydoseofds.com/

DailyDoseofDS.com

#5) Browserbase Tool

The hotel search agent uses the Browserbase tool to simulate human browsing
and gather hotel data.

To be precise it automatically navigates the Kayak website and interacts with the
web page.

Check this out:

72

https://www.dailydoseofds.com/

DailyDoseofDS.com

#6) Setup Crew

Once the agents and tools are deûned, we orchestrate them using CrewAI.

Deûne their tasks, sequence their actions, and watch them collaborate in real
time! Check this out:

#7) Kickoû and results

Finally, we feed the user9s request (location, dates etc.) into the Crew and let it
run! Check this out:

73

https://www.dailydoseofds.com/

DailyDoseofDS.com

Streamlit UI

To make this accessible, we wrapped the entire system in a @Streamlit interface.

It9s a simple chat-like UI where you enter your location and other details and see
the results in real time!

Check this out:

The code is available here:

https://github.com/patchy631/ai-engineering-
hub/tree/main/hotel-booking-crew

74

https://www.dailydoseofds.com/
https://x.com/streamlit
https://github.com/patchy631/ai-engineering-hub/tree/main/hotel-booking-crew
https://github.com/patchy631/ai-engineering-hub/tree/main/hotel-booking-crew

DailyDoseofDS.com

#7) Multi-agent Deep Researcher
ChatGPT has a deep research feature. It helps you get detailed insights on any
topic. Learn how you can build a 100% local alternative to it.

Tech stack:

ï Linkup platform for deep web research
ï CrewAI for multi-agent orchestration
ï Ollama to locally serve DeepSeek
ï Cursor as MCP host

Workûow:

ï User submits a query
ï Web search agent runs deep web search via Linkup
ï Research analyst veriûes and deduplicates results
ï Technical writer cra܀昀s a coherent response with citations

75

https://www.dailydoseofds.com/

DailyDoseofDS.com

Let9s implement this!

#1) Setup LLM

We'll use a locally served DeepSeek-R1 using Ollama.

#2) Deûne Web Search Tool

We'll use Linkup platform's powerful search capabilities, which rival Perplexity
and OpenAI, to power our web search agent. This is done by deûning a custom
tool that our agent can use.

76

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3) Deûne Web Search Agent

The web search agent gathers up-to-date information from the internet based on
user query. The linkup tool we deûned earlier is used by this agent.

#4) Deûne Research Analyst Agent

77

https://www.dailydoseofds.com/

DailyDoseofDS.com

This agent transforms raw web search results into structured insights, with
source URLs. It can also delegate tasks back to the web search agent for
veriûcation and fact-checking.

#5) Deûne Technical Writer Agent

It takes the analyzed and veriûed results from the analyst agent and dra܀昀s a
coherent response with citations for the end user.

#6) Setup Crew

78

https://www.dailydoseofds.com/

DailyDoseofDS.com

Finally, once we have all the agents and tools deûned we set up and kickoû our
deep researcher crew.

#7) Create MCP Server

Now, we'll encapsulate our deep research team within an MCP tool. With just a
few lines of code, our MCP server will be ready.

Let's see how to connect it with Cursor.

79

https://www.dailydoseofds.com/

DailyDoseofDS.com

#8) Integrate MCP server with Cursor

Go to: File ³ Preferences ³ Cursor Settings ³ MCP ³ Add new global MCP
server

In the JSON ûle, add what's shown below

80

https://www.dailydoseofds.com/

DailyDoseofDS.com

Done! Your deep research MCP server is live and connected to Cursor.

The code is available here:

https://www.dailydoseofds.com/p/hands-
on-mcp-powered-deep-researcher/

81

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-mcp-powered-deep-researcher/
https://www.dailydoseofds.com/p/hands-on-mcp-powered-deep-researcher/

DailyDoseofDS.com

#8) Human-like Memory for Agents
If a memory-less AI Agent is deployed in production, every interaction with the
Agent will be a blank slate. Learn how to build an AI Agent with human-like
memory to solve this.

Tech stack:

ï Zep AI for the memory layer to AI agent
ï Microso܀昀 AutoGen for agent orchestration
ï Ollama to locally serve Qwen3

Workûow:

ï User submits a query

82

https://www.dailydoseofds.com/

DailyDoseofDS.com

ï Agent saves the conversation and extracts facts into memory
ï Agent retrieves facts and summarizes
ï Uses facts and history for informed responses

Let9s implement this!

#1) Setup LLM

We'll use a locally served Qwen 3 via Ollama. Check this out:

#2) Initialise Zep Client

We're leveraging zep_ai's Foundational Memory Layer to equip our Autogen
agent with genuine task-completion capabilities.

83

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3) Create User Session

Create a Zep client session for the user, which the agent will use to manage
memory. A user can have multiple sessions. Here9s how it looks:

#4) Deûne Zep Conversable Agent

Our Zep Memory Agent builds on Autogen's Conversable Agent, drawing live
memory context from Zep Cloud with each user query.

It remains eûcient by utilizing the session we just established.

Here9s how it comes together:

84

https://www.dailydoseofds.com/

DailyDoseofDS.com

#5) Setting up Agents

We initialize the Conversable Agent and a Stand-in Human Agent to manage
chat interactions.

Here9s the setup:

85

https://www.dailydoseofds.com/

DailyDoseofDS.com

#6) Handle Agentic Chat

The Zep Conversable Agent steps in to create a coherent, personalized response.

It seamlessly integrates memory and conversation. Here9s how it works:

86

https://www.dailydoseofds.com/

DailyDoseofDS.com

#7) Streamlit UI

We created a streamlined Streamlit UI to ensure smooth and simple interactions
with the Agent.

Here9s what it looks like:

#8) Visualize Knowledge Graph

We can interactively map users' conversations across multiple sessions with Zep
Cloud's UI.

This powerful tool allows us to visualize how knowledge evolves through a graph.

Take a look:

87

https://www.dailydoseofds.com/

DailyDoseofDS.com

The code is available here:

https://www.dailydoseofds.com/p/hands-on-bu
ild-an-ai-agent-with-human-like-memory/

88

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-build-an-ai-agent-with-human-like-memory/
https://www.dailydoseofds.com/p/hands-on-build-an-ai-agent-with-human-like-memory/

DailyDoseofDS.com

#9) Multi-agent Book Writer
Build an Agentic workûow that writes a 20k-word book from a 3-5 word book
title.

Tech stack:

ï Firecrawl for web scraping.
ï CrewAI for orchestration.
ï Ollama to serve Qwen 3 locally.
ï LightningAI for development and hosting

Workûow:

89

https://www.dailydoseofds.com/
https://x.com/LightningAI

DailyDoseofDS.com

ï Using Firecrawl, Outline Crew scrapes data related to the book title and
decides the chapter count and titles.

ï Multiple writer Crews work in parallel to write one chapter each.
ï Combine all chapters to get the book.

Let's implement this!

#1) Scraping tool - SERP API

Books demand research. Thus, we'll use Firecrawl's SERP API to scrape data.

Tool usage:

ï Outline Crew ³ to research the book title and prepare an outline.
ï Writer Crew ³ to research the chapter title and write it.

See this code:

90

https://www.dailydoseofds.com/

DailyDoseofDS.com

#2) Setup Qwen 3 locally

We'll serve Qwen 3 locally through Ollama. To do this:

ï First, we download it locally.
ï Next, we deûne it with the CrewAI's LLM class.

91

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3) Outline Crew

This Crew has two Agents:

ï Research Agent ³ Uses the Firecrawl scraping tool to scrape data related
to the book's title and prepare insights.

ï Outline Agent ³ Uses the insights to output total chapters and titles as
Pydantic output.

92

https://www.dailydoseofds.com/

DailyDoseofDS.com

#4) Writer Crew

This Crew has two Agents:

ï Research Agent ³ Uses the Firecrawl Scraping tool to scrape data related
to a chapter's title and prepare insights.

ï Write Agent ³ Uses the insights to write a chapter.

Check this code:

93

https://www.dailydoseofds.com/

DailyDoseofDS.com

#5) Create a Flow

We use CrewAI Flows to orchestrate the workûow.

First, the outline method invokes the Outline Crew, which:

ï research the topic using the scraping tool.
ï returns the total number of chapters and the corresponding titles.

This is implemented below:

94

https://www.dailydoseofds.com/

DailyDoseofDS.com

#6) Save the book

Once all Writer Crews have ûnished execution, we save the book as a Markdown
ûle.

Check this code:

95

https://www.dailydoseofds.com/

DailyDoseofDS.com

#7) Kickoû the Flow

Finally, we run the Flow.

ï First, the Outline Crew is invoked. It utilizes the Firecrawl scraping tool to
prepare the outline.

ï Next, many Writer Crews are invoked in parallel to write one chapter each.

96

https://www.dailydoseofds.com/

DailyDoseofDS.com

This workûow runs for ~2 minutes, and we get a neatly written book about the
speciûed topic4"Astronomy in 2025." Here's the book our Agentic workûow
wrote:

The code is available here:

https://blog.dailydoseofds.com/p/building-a-m
ulti-agent-book-writer/

97

https://www.dailydoseofds.com/
https://blog.dailydoseofds.com/p/building-a-multi-agent-book-writer/
https://blog.dailydoseofds.com/p/building-a-multi-agent-book-writer/

DailyDoseofDS.com

#10) Multi-agent Content Creation System
Build an Agentic workûow that turns any URL into social media posts and
auto-schedules them via Typefully.

Tech stack:

ï Motia as the uniûed backend framework
ï Firecrawl to scrape web content
ï Ollama to locally serve Deepseek-R1 LLM

98

https://www.dailydoseofds.com/
https://x.com/motiadev
https://x.com/firecrawl_dev
https://x.com/ollama

DailyDoseofDS.com

Workûow:

ï User submits URL to scrape
ï Firecrawl scrapes content and converts it to markdown
ï Twitter and LinkedIn agents run in parallel to generate content
ï Generated content gets scheduled via Typefully

Let9s implement this:

Steps are the fundamental building blocks of Motia.

They consist of two main components:

ï The Conûg object: It instructs Motia on how to interact with a step.
ï The handler function: It deûnes the main logic of a step.

Check this out:

99

https://www.dailydoseofds.com/

DailyDoseofDS.com

With that understanding in mind, let's start building our content creation
workûow.

#1) Entry point (API)

We start our content generation workûow by deûning an API step that takes in a
URL from the user via a POST request.

Check this out:

100

https://www.dailydoseofds.com/

DailyDoseofDS.com

#2) Web scraping

This step scrapes the article content using Firecrawl and emits the next step in
the workûow.

Steps can be connected together in a sequence, where the output of one step
becomes the input for another.

Check this out:

101

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3) Content generation

The scraped content gets fed to the X and LinkedIn agents that run in parallel
and generate curated posts.

We deûne all our prompting and AI logic in the handler that runs automatically
when a step is triggered.

Check this out:

102

https://www.dailydoseofds.com/

DailyDoseofDS.com

#4) Scheduling

A܀昀er the content is generated we dra܀昀 it in Typefully where we can easily review
our social media posts.

Motia also allows us to mix and match diûerent languages within the same
workûow providing great ûexibility.

Check this typescript code:

103

https://www.dailydoseofds.com/

DailyDoseofDS.com

A܀昀er deûning our steps, we install required dependencies using `npm install` and
run the Motia workbench using `npm run dev` commands.

Check this out:

104

https://www.dailydoseofds.com/

DailyDoseofDS.com

Motia workbench provides an interactive UI to help build, monitor and debug
our ûows.

With one-click you can also deploy it to the cloud!

The code is available here:

https://blog.dailydoseofds.com/p/build-a-multi
-agent-content-creation/

105

https://www.dailydoseofds.com/
https://blog.dailydoseofds.com/p/build-a-multi-agent-content-creation/
https://blog.dailydoseofds.com/p/build-a-multi-agent-content-creation/

DailyDoseofDS.com

#11) Documentation Writer Flow
Build an Agentic workûow that generates full project documentation from just a
GitHub repo URL.

Tech stack:

ï CrewAI for multi-agent orchestration
ï Ollama to locally serve DeepSeek-R1 LLM

Workûow:

ï User speciûes GitHub repo
ï Planning crew creates documentation plan
ï Documentation crew writes documentation according to plan
ï Generated docs get saved to local directory

Let9s implement this!

106

https://www.dailydoseofds.com/

DailyDoseofDS.com

#1) Setup LLM

We will use Deepseek-R1 as the LLM, served locally using Ollama.

#2) Deûne Pydantic schema

We deûne the following pydantic schemas for robust structured outputs.

This ensures data validation and integrity before generating the documentation
ûles. Check this code:

107

https://www.dailydoseofds.com/

DailyDoseofDS.com

#3) Planning Crew

This crew oversees strategy for the outline via:

ï Code explorer agent -> Analyzes codebase for key components, patterns
and relationships.

ï Doc planner agent -> Creates outline based on codebase analysis as
pydantic output.

Check this out:

#4) Documentation Crew

This crew writes and reviews the documentation via:

ï Doc writer agent -> Generates a high-level dra܀昀 based on the planned
outline.

108

https://www.dailydoseofds.com/

DailyDoseofDS.com

ï Doc reviewer agent -> Reviews the dra܀昀 for consistency, accuracy and
completeness.

Check this out:

#5) Create Documentation Flow

A܀昀er setting up our crews, we create the main workûow that:

ï Clones the GitHub repo
ï Plans and saves the outline
ï Generates documentation based on the outline
ï Saves ûnal docs to local directory

Check this code:

109

https://www.dailydoseofds.com/

DailyDoseofDS.com

#6) Kickoû the ûow

Finally, when we have everything ready, we kick oû our documentation ûow with
the GitHub repo URL.

Check this out:

110

https://www.dailydoseofds.com/

DailyDoseofDS.com

The code is available here:

https://github.com/patchy631/ai-engineering-
hub/tree/main/documentation-writer-ûow

111

https://www.dailydoseofds.com/
https://github.com/patchy631/ai-engineering-hub/tree/main/documentation-writer-flow
https://github.com/patchy631/ai-engineering-hub/tree/main/documentation-writer-flow

DailyDoseofDS.com

#12) News Generator
The app takes a user query, searches the web for it, and turns it into a
well-cra܀昀ed news article, with citations.

Tech stack:

ï Cohere ultra-fast Command R 7B as LLM
ï CrewAI for multi-agent orchestration

Workûow:

We9ll have two agents in this multi-agent app:

Research analyst agent:

112

https://www.dailydoseofds.com/

DailyDoseofDS.com

ï Accepts a user query.
ï Uses the Serper web search tool to fetch results from the internet.
ï Consolidates the results.

Content writer agent:

ï Uses the curated results to prepare a polished, publication-ready article.

Let9s implement this:

#1) Setup

Create a .env ûle for their corresponding API keys:

ï Cohere API key
ï Serper API key

Next, setup the LLM and web search tool as follows:

#2) Senior Research Analyst Agent

113

https://www.dailydoseofds.com/

DailyDoseofDS.com

The web-search agent takes a user query and then uses the Serper web search
tool to fetch results from the internet and consolidate them. Check this out:

This is the research task that we assign to our senior research analyst agent, with
description and expected output.

#3) Content writer agent

114

https://www.dailydoseofds.com/

DailyDoseofDS.com

The role of content writer is to use the curated results and turn them into a
polished, publication-ready news article .

This is how we describe the writing task with all the details and expected output:

#4) Setup Crew

115

https://www.dailydoseofds.com/

DailyDoseofDS.com

And we're done!

Just build a crew and kick it oû!

The code is available here:

https://www.dailydoseofds.com/p/hands-on-bu
ilding-a-multi-agent-news-generator/

116

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-building-a-multi-agent-news-generator/
https://www.dailydoseofds.com/p/hands-on-building-a-multi-agent-news-generator/

	How to make the most out of this book and your time?
	Table of contents

	
	
	
	
	
	AI Agents
	
	What is an AI Agent?
	Agent vs LLM vs RAG
	
	LLM (Large Language Model)
	RAG (Retrieval-Augmented Generation)
	Agent

	Building blocks of AI Agents
	1) Role-playing
	2) Focus/Tasks
	3) Tools
	#3.1) Custom tools
	#3.2) Custom tools via MCP
	4) Cooperation
	5) Guardrails
	6) Memory

	5 Agentic AI Design Patterns
	#1) Reflection pattern
	#2) Tool use pattern
	#3) ReAct (Reason and Act) pattern
	#4) Planning pattern
	#5) Multi-Agent pattern

	
	5 Levels of Agentic AI Systems
	#1) Basic responder
	#2) Router pattern
	#3) Tool calling
	#4) Multi-agent pattern
	#5) Autonomous pattern

	
	
	AI Agents Projects
	#1) Agentic RAG
	
	#2) Voice RAG Agent
	#3) Multi-agent Flight finder
	
	#4) Financial Analyst
	
	#5) Brand Monitoring System
	
	
	#6) Multi-agent Hotel Finder
	
	#7) Multi-agent Deep Researcher
	#8) Human-like Memory for Agents
	
	#9) Multi-agent Book Writer
	#10) Multi-agent Content Creation System
	#11) Documentation Writer Flow
	
	#12) News Generator
	

