

	

	

Introduction to Python
Programming

SENIOR CONTRIBUTING AUTHORS
UDAYAN DAS, SAINT MARY'S COLLEGE OF CALIFORNIA
AUBREY LAWSON, WILEY
CHRIS MAYFIELD, JAMES MADISON UNIVERSITY
NARGES NOROUZI, UC BERKELEY

	

	

OpenStax
Rice University
6100 Main Street MS-375
Houston, Texas 77005

To learn more about OpenStax, visit https://openstax.org.
Individual print copies and bulk orders can be purchased through our website.

©2024 Rice University. Textbook content produced by OpenStax is licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Under this license, any user of this textbook or the textbook
contents herein must provide proper attribution as follows:

- If you redistribute this textbook in a digital format (including but not limited to PDF and HTML), then you
must retain on every page the following attribution:
“Access for free at openstax.org.”

- If you redistribute this textbook in a print format, then you must include on every physical page the
following attribution:
“Access for free at openstax.org.”

- If you redistribute part of this textbook, then you must retain in every digital format page view (including
but not limited to PDF and HTML) and on every physical printed page the following attribution:
“Access for free at openstax.org.”

- If you use this textbook as a bibliographic reference, please include
https://openstax.org/details/books/introduction-python-programming in your citation.

For questions regarding this licensing, please contact support@openstax.org. This book utilizes the OpenStax
Python Code Runner. The code runner is developed by Wiley and is All Rights Reserved.

Trademarks
The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, OpenStax CNX logo,
OpenStax Tutor name, Openstax Tutor logo, Connexions name, Connexions logo, Rice University name, and
Rice University logo are not subject to the license and may not be reproduced without the prior and express
written consent of Rice University.

DIGITAL VERSION ISBN-13 978-1-961584-45-7
ORIGINAL PUBLICATION YEAR 2024
1 2 3 4 5 6 7 8 9 10 CJP 24

	

	

OPENSTAX

OpenStax provides free, peer-reviewed, openly licensed textbooks for introductory college and Advanced
Placement® courses and low-cost, personalized courseware that helps students learn. A nonprofit ed tech
initiative based at Rice University, we’re committed to helping students access the tools they need to complete
their courses and meet their educational goals.

RICE UNIVERSITY

OpenStax is an initiative of Rice University. As a leading research university with a distinctive commitment to
undergraduate education, Rice University aspires to path-breaking research, unsurpassed teaching, and
contributions to the betterment of our world. It seeks to fulfill this mission by cultivating a diverse community
of learning and discovery that produces leaders across the spectrum of human endeavor.

PHILANTHROPIC SUPPORT

OpenStax is grateful for the generous philanthropic partners who advance our mission to improve educational

access and learning for everyone. To see the impact of our supporter community and our most updated list of

partners, please visit openstax.org/foundation.

Arnold Ventures

Chan Zuckerberg Initiative

Chegg, Inc.

Arthur and Carlyse Ciocca Charitable Foundation

Digital Promise

Ann and John Doerr

Bill & Melinda Gates Foundation

Girard Foundation

Google Inc.

The William and Flora Hewlett Foundation

The Hewlett-Packard Company

Intel Inc.

Rusty and John Jaggers

The Calvin K. Kazanjian Economics Foundation

Charles Koch Foundation

Leon Lowenstein Foundation, Inc.

The Maxfield Foundation

Burt and Deedee McMurtry

Michelson 20MM Foundation

National Science Foundation

The Open Society Foundations

Jumee Yhu and David E. Park III

Brian D. Patterson USA-International Foundation

The Bill and Stephanie Sick Fund

Steven L. Smith & Diana T. Go

Stand Together

Robin and Sandy Stuart Foundation

The Stuart Family Foundation

Tammy and Guillermo Treviño

Valhalla Charitable Foundation

White Star Education Foundation

Schmidt Futures

William Marsh Rice University

CONTENTS

Preface 1

Statements 71

Introduction 7
1.1 Background 8
1.2 Input/output 10
1.3 Variables 14
1.4 String basics 16
1.5 Number basics 20
1.6 Error messages 24
1.7 Comments 27
1.8 Why Python? 31
1.9 Chapter summary 34

Expressions 392

Introduction 39
2.1 The Python shell 40
2.2 Type conversion 42
2.3 Mixed data types 45
2.4 Floating-point errors 48
2.5 Dividing integers 51
2.6 The math module 54
2.7 Formatting code 60
2.8 Python careers 65
2.9 Chapter summary 67

Objects 713

Introduction 71
3.1 Strings revisited 71
3.2 Formatted strings 76
3.3 Variables revisited 79
3.4 List basics 83
3.5 Tuple basics 85
3.6 Chapter summary 88

Decisions 914

Introduction 91
4.1 Boolean values 91
4.2 If-else statements 96

4.3 Boolean operations 100
4.4 Operator precedence 104
4.5 Chained decisions 107
4.6 Nested decisions 113
4.7 Conditional expressions 116
4.8 Chapter summary 118

Loops 1215

Introduction 121
5.1 While loop 121
5.2 For loop 125
5.3 Nested loops 129
5.4 Break and continue 133
5.5 Loop else 137
5.6 Chapter summary 140

Functions 1456

Introduction 145
6.1 Defining functions 145
6.2 Control flow 149
6.3 Variable scope 153
6.4 Parameters 158
6.5 Return values 163
6.6 Keyword arguments 168
6.7 Chapter summary 170

Modules 1737

Introduction 173
7.1 Module basics 174
7.2 Importing names 177
7.3 Top-level code 180
7.4 The help function 184
7.5 Finding modules 189
7.6 Chapter summary 194

Strings 1978

Introduction 197
8.1 String operations 197
8.2 String slicing 200
8.3 Searching/testing strings 204
8.4 String formatting 209

Access for free at openstax.org

8.5 Splitting/joining strings 217
8.6 Chapter summary 220

Lists 2239

Introduction 223
9.1 Modifying and iterating lists 223
9.2 Sorting and reversing lists 226
9.3 Common list operations 229
9.4 Nested lists 231
9.5 List comprehensions 234
9.6 Chapter summary 238

Dictionaries 24110

Introduction 241
10.1 Dictionary basics 241
10.2 Dictionary creation 243
10.3 Dictionary operations 245
10.4 Conditionals and looping in dictionaries 250
10.5 Nested dictionaries and dictionary comprehension 256
10.6 Chapter summary 260

Classes 26511

Introduction 265
11.1 Object-oriented programming basics 265
11.2 Classes and instances 267
11.3 Instance methods 272
11.4 Overloading operators 276
11.5 Using modules with classes 281
11.6 Chapter summary 283

Recursion 28712

Introduction 287
12.1 Recursion basics 287
12.2 Simple math recursion 289
12.3 Recursion with strings and lists 292
12.4 More math recursion 294
12.5 Using recursion to solve problems 297
12.6 Chapter summary 301

Inheritance 30313

Introduction 303
13.1 Inheritance basics 303
13.2 Attribute access 306
13.3 Methods 310
13.4 Hierarchical inheritance 316
13.5 Multiple inheritance and mixin classes 320
13.6 Chapter summary 323

Files 32714

Introduction 327
14.1 Reading from files 327
14.2 Writing to files 331
14.3 Files in different locations and working with CSV files 335
14.4 Handling exceptions 339
14.5 Raising exceptions 344
14.6 Chapter summary 347

Data Science 34915

Introduction 349
15.1 Introduction to data science 349
15.2 NumPy 352
15.3 Pandas 354
15.4 Exploratory data analysis 362
15.5 Data visualization 368
15.6 Summary 375

Answer Key 379

Index 403

Access for free at openstax.org

Preface
About OpenStax
OpenStax is part of Rice University, which is a 501(c)(3) nonprofit charitable corporation. As an educational
initiative, it's our mission to improve educational access and learning for everyone. Through our partnerships
with philanthropic organizations and our alliance with other educational resource companies, we're breaking
down the most common barriers to learning. Because we believe that everyone should and can have access to
knowledge.

About OpenStax Resources
Customization
Introduction to Python Programming is licensed under a Creative Commons Attribution 4.0 International (CC
BY) license, which means that you can distribute, remix, and build upon the content, as long as you provide
attribution to OpenStax and its content contributors.

Because our books are openly licensed, you are free to use the entire book or select only the sections that are
most relevant to the needs of your course. Feel free to remix the content by assigning your students certain
chapters and sections in your syllabus, in the order that you prefer. You can even provide a direct link in your
syllabus to the sections in the web view of your book.

Instructors also have the option of creating a customized version of their OpenStax book. Visit the Instructor
Resources section of your book page on OpenStax.org for more information.

Art attribution
In Introduction to Python Programming, most photos and third-party illustrations contain attribution to their
creator, rights holder, host platform, and/or license within the caption. Because the art is openly licensed,
anyone may reuse the art as long as they provide the same attribution to its original source. To maximize
readability and content flow, some art does not include attribution in the text. This art is part of the public
domain or under a CC0 or similar license, and can be reused without attribution. For illustrations (e.g. graphs,
charts, etc.) that are not credited, use the following attribution: Copyright Rice University, OpenStax, under CC
BY 4.0 license.

Errata
All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook,
errors sometimes occur. Since our books are web-based, we can make updates periodically when deemed
pedagogically necessary. If you have a correction to suggest, submit it through the link on your book page on
OpenStax.org. Subject matter experts review all errata suggestions. OpenStax is committed to remaining
transparent about all updates, so you will also find a list of past and pending errata changes on your book
page on OpenStax.org.

Format
You can access this textbook for free in web view or PDF through OpenStax.org. The web view is the
recommended format because it is the most accessible—including being WCAG 2.1 AA compliant—and most
current.

About Introduction to Python Programming
Introduction to Python Programming provides a comprehensive foundation in programming concepts and
skills, and is aligned to the scope of most introductory courses. A wide array of scenarios, contexts, and
problems reflect programming applications in many disciplines and careers. The offering is suitable for a
diverse learner audience, including those pursuing computer science, business, science, social science,
statistics, data science, and related areas of study and employment.

Preface 1

Introduction to Python Programming is an interactive offering that teaches basic programming concepts,
problem-solving skills, and the Python language using hands-on activities. The resource includes a unique,
integrated code runner, through which students can immediately apply what they learn to check their
understanding. Embedded videos, critical thinking exercises, and explorations of external programming tools
and activities all contribute to a meaningful and supportive learning experience.

The content is organized in chapters, with each chapter containing 6-8 sections. Each section follows the
pattern:

• Learning objectives
• 1–3 subsections
• Programming practice

The learning objectives are designed to help readers identify the section's focus. Each objective completes the
sentence, "By the end of this section you should be able to". The programming practice aligns with the
learning objectives and gives readers an opportunity to apply concepts learned in the section.

Pedagogical Foundation
Concise text and video-based animations
Introduction to Python Programming is designed to foster active learning and student engagement. It focuses
on interactivity and practice through its integrated code runner, videos, and links to external environments and
activities. With that focus, the material is often more concise, with less text and more activity.

Each section's content is organized in subsections. The subsection begins with a concise introduction to the
concept, with key term definitions and brief context for its relevance and importance. The concept is then
explained in detail using video-based animations and interactive learning questions.

Animation videos use a step-by-step approach to show the execution of Python code. Explanations for each
step describe Python syntax, show how fundamental programming concepts are used, illustrate how variables
are assigned, emphasize how code executes line by line, apply problem solving to create programs, and more.

CHECKPOINT

Displaying output to the user

Access multimedia content (https://www.openstax.org/r/displaying-output)

Learning questions
After introducing a new concept and explaining the concept with a video-based animation, each subsection
includes engagement in the form of learning questions. These questions reinforce the concepts taught,
explain concepts in more depth, directly address misconceptions and errors commonly made by new
programmers, and teach related concepts.

Explanations are provided for the incorrect answers. Incorrect answers' explanations include why the answer is
incorrect and help guide the reader to the correct answer.

Incorrect answer choices typically represent a misconception or are the result of making a common mistake.
Even if the correct answer is achieved, readers are encouraged to explore the explanations to gain awareness
of these common misconceptions.

Programming practice exercises
Each section ends with 1 or 2 practice programs. This book includes an integrated programming environment,
known as the "OpenStax Python Code Runner," which allows readers to write programs directly in the browser.

2 Preface

Access for free at openstax.org

The code runner requires the reader to pre-enter any input before running a program.

A sample code runner

Conventions used in this book
The following typographical conventions are used throughout the book:

Bold
Indicates vocabulary words when first defined in the chapter.

Italic
Indicates emphasized text, filenames, and file extensions.

Constant width
Used for code listings and code elements within paragraphs. Code elements include variable names, Python
keywords, etc.

Constant width bold
Shows commands or keyboard input that should be typed literally by the user.

Ex:
Abbreviation for "Example:"

Preface 3

About the Authors
Senior Contributing Authors

Senior contributing authors, left to right: Udayan Das, Aubrey Lawson, Chris Mayfield, and Narges Norouzi.

Udayan Das, Saint Mary's College of California

Udayan Das, PhD, is an Associate Professor and Program Director of Computer Science at Saint Mary's College
of California. He received his PhD in Computer Science and a master's in Computer Engineering from the
Illinois Institute of Technology. His research interests include wireless networks, computer science education
and broadening participation in computing, and knowledge graph backed language models for technical
document processing. He is also strongly committed to incorporating ethics into computer science and
engineering education, and the Computer Science program that he has developed and launched at Saint
Mary's College of California centers ethics and social justice while teaching students to be high-quality
computing professionals.

Aubrey Lawson, Wiley

Aubrey Lawson is a CS Content Developer at zyBooks. She received her bachelor's and master's degrees in
Computer Science from Clemson University, and her PhD research focuses on CS education.

Chris Mayfield, James Madison University

Chris Mayfield, PhD, is a Professor of Computer Science at James Madison University. His research focuses on
CS education and professional development at the undergraduate and high school levels. He received a PhD in
Computer Science from Purdue University and bachelor’s degrees in CS and German from the University of
Utah.

Narges Norouzi, UC Berkeley

Narges Norouzi received her MS and PhD from the University of Toronto, focusing on applied deep learning.
She has since been involved in working on applied machine learning projects with a focus on biology and
education. Her CS education research focuses on using artificial intelligence in the classroom to close the
equity gap and leading student-centered programs that promote equity and access.

Contributing Authors

Contributing authors, left to right: Yamuna Rajasekhar and Reed Kanemaru.

Yamuna Rajasekhar, Wiley

4 Preface

Access for free at openstax.org

Yamuna Rajasekhar, PhD, is Director of Content, Authoring, and Research at Wiley. She works across disciplines
on research strategy, authoring pedagogy and training, and content development for Computer Science and
IT. She received her MS and PhD from University of North Carolina at Charlotte, focusing on Computer
Engineering education. Prior to joining Wiley as a content author, Yamuna was an Assistant Professor of
Computer Engineering at Miami University, where her research was focused on assistive technology with
embedded systems and Computer Engineering education.

Reed Kanemaru, Wiley

Reed Kanemaru earned a BS in Computer Science from University of California, Riverside in 2020 and an MS in
Computer Science from University of California, Riverside in 2021. Since graduating, he has worked as a
Content/Software Developer at zyBooks.

Reviewers
Mel Akhimiemona, Community College of Baltimore County

Doina Bein, Cal State Fullerton

Phillip Bradford, University of Connecticut

James Braman, Community College of Baltimore County

Robert Burrows, College of DuPage

Deena Engel, New York University

Gabriel Ferrer, Hendrix College

Nazli Hardy, Millersville University

Matthew Hertz, University at Buffalo

Rania Hodhod, Columbus State University

Akira Kawaguchi, The City College of New York

Kevin Lin, University of Washington

Matin Pirouz, Fresno State

Muhammad Rahman, Clayton State University

Jerry Reed, Valencia College

Kathleen Tamerlano, Cuyahoga Community College

Linda Tansil

Academic Integrity
Academic integrity builds trust, understanding, equity, and genuine learning. While students may encounter
significant challenges in their courses and their lives, doing their own work and maintaining a high degree of
authenticity will result in meaningful outcomes that will extend far beyond their college career. Faculty,
administrators, resource providers, and students should work together to maintain a fair and positive
experience.

We realize that students benefit when academic integrity ground rules are established early in the course. To
that end, OpenStax has created an interactive to aid with academic integrity discussions in your course.

Preface 5

attribution: Copyright Rice University, OpenStax, under CC BY 4.0 license

Visit our academic integrity slider (https://www.openstax.org/r/academic-integrity-slider). Click and drag icons
along the continuum to align these practices with your institution and course policies. You may then include
the graphic on your syllabus, present it in your first course meeting, or create a handout for students.

At OpenStax we are also developing resources supporting authentic learning experiences and assessment.
Please visit this book's page for updates. For an in-depth review of academic integrity strategies, we highly
recommend visiting the International Center of Academic Integrity (ICAI) website at
https://academicintegrity.org/ (https://academicintegrity.org/).

Community Hubs
OpenStax partners with the Institute for the Study of Knowledge Management in Education (ISKME) to offer
Community Hubs on OER Commons—a platform for instructors to share community-created resources that
support OpenStax books, free of charge. Through our Community Hubs, instructors can upload their own
materials or download resources to use in their own courses, including additional ancillaries, teaching
material, multimedia, and relevant course content. We encourage instructors to join the hubs for the subjects
most relevant to your teaching and research as an opportunity both to enrich your courses and to engage with
other faculty. To reach the Community Hubs, visit www.oercommons.org/hubs/openstax
(https://oercommons.org/groups/openstax-introduction-to-python-programming/14678/?__hub_id=27).

Technology partners
As allies in making high-quality learning materials accessible, our technology partners offer optional low-cost
tools that are integrated with OpenStax books. To access the technology options for your text, visit your book
page on OpenStax.org.

6 Preface

Access for free at openstax.org

Figure 1.1 credit: Larissa Chu, CC BY 4.0

Chapter Outline
1.1 Background
1.2 Input/output
1.3 Variables
1.4 String basics
1.5 Number basics
1.6 Error messages
1.7 Comments
1.8 Why Python?
1.9 Chapter summary

Introduction
Computers and programs are everywhere in today's world. Programs affect many aspects of daily life and
society as a whole. People depend on programs for communication, shopping, entertainment, health care, and
countless other needs. Learning how to program computers opens the door to many careers and
opportunities for building a better world.

Programs consist of statements to be run one after the other. A statement describes some action to be
carried out.

The statement print("Good morning") instructs Python to output the message "Good morning" to the
user. The statement count = 0 instructs Python to assign the integer 0 to the variable count.

This chapter introduces statements for input and output, assigning variables, and basic arithmetic. Making
mistakes is a normal part of programming, and the chapter includes advice on understanding error messages.
The chapter ends with a short history of Python and discusses why Python has become so popular today.

Statements
1

1.1 Background

Learning Objectives
By the end of this section you should be able to

• Name two examples of computer programs in everyday life.
• Explain why Python is a good programming language to learn.

Computer programs
A computer is an electronic device that stores and processes information. Examples of computers include
smartphones, tablets, laptops, desktops, and servers. Technically, a program is a sequence of instructions that
a computer can run. Programs help people accomplish everyday tasks, create new technology, and have fun.

The goal of this book is to teach introductory programming and problem solving. Writing programs is a
creative activity, inherently useful, and rewarding! No prior background in computer science is necessary to
read this book. Many different types of programs exist, as shown in the illustration below. This book will focus
on general purpose programs that typically run "behind the scenes."

CHECKPOINT

Online music streaming

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-1-background)

CONCEPTS IN PRACTICE

Computers and programs

1. How many types of programs were described in the animation?
a. 3
b. 4
c. 5

2. What type of program will this book explain how to write?
a. a tool that summarizes an individual's music preferences
b. a mobile app for managing and sharing playlists of songs
c. a website that shows the top artists for the past five years

3. Which of the following devices is an example of a computer?
a. wired headphones that plug into a smartphone
b. remote control that pauses or skips the current song
c. wi-fi speaker that streams music from Amazon

4. Reading this book requires a strong background in mathematics.
a. true
b. false

8 1 • Statements

Access for free at openstax.org

EXPLORING FURTHER

Later chapters of this book show how to write analysis programs using real data. Example libraries that
provide access to online streaming services include Spotipy (https://openstax.org/r/100spotipy), Pytube
(https://openstax.org/r/100pytube), and Pydora (https://openstax.org/r/100pydora). Python-related tools
often have the letters "py" in their name.

The Python language
This book introduces Python (https://openstax.org/r/100python), one of the top programming languages
today. Leading tech giants like Google, Apple, NASA, Instagram, Pixar, and others use Python extensively.

One reason why Python is popular is because many libraries exist for doing real work. A library is a collection
of code that can be used in other programs. Python comes with an extensive Standard Library
(https://openstax.org/r/100pythlibrary) for solving everyday computing problems like extracting data from files
and creating summary reports. In addition, the community develops many other libraries for Python. Ex:
Pandas (https://openstax.org/r/100pandas) is a widely used library for data analysis.

Another reason why Python is popular is because the syntax is concise and straightforward. The syntax of a
language defines how code must be structured. Syntax rules define the keywords, symbols, and formatting
used in programs. Compared to other programming languages, Python is more concise and straightforward.

EXAMPLE 1.1

Hello world in Python and Java

By tradition, Hello World (https://openstax.org/r/100helloworld) is the first program to write when learning
a new language. This program simply displays the message "Hello, World!" to the user. The hello world
program is only one line in Python:

print("Hello, World!")

In contrast, the hello world program is five lines in Java (a different language).

public class Hello {
public static void main(String[] args) {
System.out.println("Hello, World!");

}
}

However, conciseness is not the only consideration for which language is used. In different situations
different languages may be more appropriate. Ex: Java is often used in Android development.

CHECKPOINT

Counting lines in a file

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-1-background)

1.1 • Background 9

CONCEPTS IN PRACTICE

Python vs Java syntax

5. In general, Python programs are _____ than Java programs.
a. faster
b. longer
c. shorter

6. In the example programs above, what syntax required by Java is not required by Python?
a. semicolons
b. parentheses
c. quote marks

TRY IT

Favorite song

The program below asks for your name and displays a friendly greeting. Run the program and see what
happens. In the error message, EOF stands for End of File.

• Many of the programs in this chapter expect input from the user. Enter your name in the Input box
below the code. Run the program again, and see what changes.

• Copy the following lines to the end of the program: print("What is your favorite song?")
song = input() print("Cool! I like", song, "too.")

• The modified program reads two lines of input: name and song. Add your favorite song to the Input
box below your name, and run the program again.

The next section of the book will explain how print() and input() work. Feel free to experiment with this
code until you are ready to move on.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-1-background)

1.2 Input/output

Learning objectives
By the end of this section you should be able to

• Display output using the print() function.
• Obtain user input using the input() function.

Basic output
The print() function displays output to the user. Output is the information or result produced by a program.
The sep and end options can be used to customize the output. Table 1.1 shows examples of sep and end.

Multiple values, separated by commas, can be printed in the same statement. By default, each value is
separated by a space character in the output. The sep option can be used to change this behavior.

By default, the print() function adds a newline character at the end of the output. A newline character tells

10 1 • Statements

Access for free at openstax.org

the display to move to the next line. The end option can be used to continue printing on the same line.

Code Output

print("Today is Monday.")
print("I like string beans.")

Today is Monday.
I like string beans.

print("Today", "is", "Monday")
print("Today", "is", "Monday", sep="...")

Today is Monday
Today...is...Monday

print("Today is Monday, ", end="")
print("I like string beans.")

Today is Monday, I like string
beans.

print("Today", "is", "Monday", sep="? ",
end="!!")
print("I like string beans.")

Today? is? Monday!!I like string
beans.

Table 1.1 Example uses of print().

CHECKPOINT

Displaying output to the user

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-2-inputoutput)

CONCEPTS IN PRACTICE

The print() function

1. Which line of code prints Hello world! as one line of output?
a. print(Hello world!)
b. print("Hello", "world", "!")
c. print("Hello world!")

2. Which lines of code prints Hello world! as one line of output?
a. print("Hello")

print(" world!")
b. print("Hello")

print(" world!", end="")
c. print("Hello", end="")

print(" world!")

3. What output is produced by the following statement?

print("555", "0123", sep="-")

1.2 • Input/output 11

a. 555 0123
b. 5550123-
c. 555-0123

DO SPACES REALLY MATTER?

Spaces and newline characters are not inherently important. However, learning to be precise is an essential
skill for programming. Noticing little details, like how words are separated and how lines end, helps new
programmers become better.

Basic input
Computer programs often receive input from the user. Input is what a user enters into a program. An input
statement, variable = input("prompt"), has three parts:

1. A variable refers to a value stored in memory. In the statement above, variable can be replaced with any
name the programmer chooses.

2. The input() function reads one line of input from the user. A function is a named, reusable block of code
that performs a task when called. The input is stored in the computer's memory and can be accessed later
using the variable.

3. A prompt is a short message that indicates the program is waiting for input. In the statement above,
"prompt" can be omitted or replaced with any message.

CHECKPOINT

Obtaining input from the user

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-2-inputoutput)

CONCEPTS IN PRACTICE

The input() function

4. Which line of code correctly obtains and stores user input?
a. input()
b. today_is = input
c. today_is = input()

5. Someone named Sophia enters their name when prompted with

print("Please enter your name: ")
name = input()

What is displayed by print("You entered:", name)?
a. You entered: name
b. You entered: Sophia

12 1 • Statements

Access for free at openstax.org

c. You entered:, Sophia

6. What is the output if the user enters "six" as the input?

print("Please enter a number: ")
number = input()
print("Value =", number)

a. Value = six
b. Value = 6
c. Value = number

TRY IT

Frost poem

Write a program that uses multiple print() statements to output the following poem by Robert Frost
(https://openstax.org/r/100robertfrost). Each print() statement should correspond to one line of output.

Tip: You don't need to write the entire program all at once. Try writing the first print() statement, and
then click the Run button. Then write the next print() statement, and click the Run button again.
Continue writing and testing the code incrementally until you finish the program.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I--
I took the one less traveled by,
And that has made all the difference.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-2-inputoutput)

TRY IT

Name and likes

Write a program that asks the following two questions (example input in bold):

Shakira
What do you like? singing

What is your name? Shakira
What do you like? singing

Output a blank line after reading the input. Then output the following message based on the input:

1.2 • Input/output 13

Shakira likes singing

Shakira likes singing

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-2-inputoutput)

1.3 Variables

Learning objectives
By the end of this section you should be able to

• Assign variables and print variables.
• Explain rules for naming variables.

Assignment statement
Variables allow programs to refer to values using names rather than memory locations. Ex: age refers to a
person's age, and birth refers to a person's date of birth.

A statement can set a variable to a value using the assignment operator (=). Note that this is different from
the equal sign of mathematics. Ex: age = 6 or birth = "May 15". The left side of the assignment statement
is a variable, and the right side is the value the variable is assigned.

CHECKPOINT

Assigning and using variables

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-3-variables)

CONCEPTS IN PRACTICE

Assigning and using variables

1. Which line of code correctly retrieves the value of the variable, city, after the following assignment?

city = "Chicago"

a. print("In which city do you live?")
b. city = "London"
c. print("The city where you live is", city)

2. Which program stores and retrieves a variable correctly?
a. print("Total =", total)

total = 6
b. total = 6

print("Total =", total)
c. print("Total =", total)

14 1 • Statements

Access for free at openstax.org

total = input()

3. Which is the assignment operator?
a. :
b. ==
c. =

4. Which is a valid assignment?
a. temperature = 98.5
b. 98.5 = temperature
c. temperature - 23.2

Variable naming rules
A variable name can consist of letters, digits, and underscores and be of any length. The name cannot start
with a digit. Ex: 101class is invalid. Also, letter case matters. Ex: Total is different from total. Python's style
guide recommends writing variable names in snake case, which is all lowercase with underscores in between
each word, such as first_name or total_price.

A name should be short and descriptive, so words are preferred over single characters in programs for
readability. Ex: A variable named count indicates the variable's purpose better than a variable named c.

Python has reserved words, known as keywords, which have special functions and cannot be used as names
for variables (or other objects).

False await else import pass

None break except in raise

True class finally is return

and continue for lambda try

as def from nonlocal while

assert del global not with

asynch elif if or yield

Table 1.2 Keywords

CONCEPTS IN PRACTICE

Valid variable names

5. Which can be used as a variable name?
a. median
b. class

1.3 • Variables 15

c. import

6. Why is the name, 2nd_input, not a valid variable name?
a. contains an underscore
b. starts with a digit
c. is a keyword

7. Which would be a good name for a variable storing a zip code?
a. z
b. var_2
c. zip_code

8. Given the variable name, DogBreed, which improvement conforms to Python's style guide?
a. dog_breed
b. dogBreed
c. dog-breed

TRY IT

Final score

Write a Python computer program that:

• Creates a variable, team1, assigned with the value "Liverpool".
• Creates a variable, team2, assigned with the value "Chelsea".
• Creates a variable score1, assigned with the value 4.
• Creates a variable, score2, assigned with the value 3.
• Prints team1, "versus", and team2 as a single line of output.
• Prints "Final score: ", score1, "to", score2 as a single line of output.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-3-variables)

1.4 String basics

Learning objectives
By the end of this section you should be able to

• Use the built-in len() function to get a string's length.
• Concatenate string literals and variables using the + operator.

Quote marks
A string is a sequence of characters enclosed by matching single (') or double (") quotes. Ex: "Happy
birthday!" and '21' are both strings.

To include a single quote (') in a string, enclose the string with matching double quotes ("). Ex: "Won't this
work?" To include a double quote ("), enclose the string with matching single quotes ('). Ex: 'They said "Try
it!", so I did'.

16 1 • Statements

Access for free at openstax.org

Valid string Invalid string

"17" or '17' 17

"seventeen" or 'seventeen' seventeen

"Where?" or 'Where?' "Where?'

"I hope you aren't sad." 'I hope you aren't sad.'

'The teacher said "Correct!" ' "The teacher said "Correct!" "

Table 1.3 Rules for strings.

CONCEPTS IN PRACTICE

Valid and invalid strings

1. Which of the following is a string?
a. Hello!
b. 29
c. "7 days"

2. Which line of code assigns a string to the variable email?
a. "fred78@gmail.com"
b. "email = fred78@gmail.com"
c. email = "fred78@gmail.com"

3. Which is a valid string?
a. I know you'll answer correctly!
b. 'I know you'll answer correctly!'
c. "I know you'll answer correctly!"

4. Which is a valid string?
a. You say "Please" to be polite
b. "You say "Please" to be polite"
c. 'You say "Please" to be polite'

len() function
A common operation on a string object is to get the string length, or the number of characters in the string.
The len() function, when called on a string value, returns the string length.

CHECKPOINT

Using len() to get the length of a string

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/

1.4 • String basics 17

1-4-string-basics)

CONCEPTS IN PRACTICE

Applying len() function to string values

5. What is the return value for len("Hi Ali")?
a. 2
b. 5
c. 6

6. What is the length of an empty string variable ("")?
a. undefined
b. 0
c. 2

7. What is the output of the following code?

number = "12"
number_of_digits = len(number)
print("Number", number, "has", number_of_digits, "digits.")

a. Number 12 has 12 digits.
b. Number 12 has 2 digits.
c. Number 12 has number_of_digits digits.

Concatenation
Concatenation is an operation that combines two or more strings sequentially with the concatenation operator
(+). Ex: "A" + "part" produces the string "Apart".

CHECKPOINT

Concatenating multiple strings

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-4-string-basics)

CONCEPTS IN PRACTICE

String concatenation

8. Which produces the string "10"?
a. 1 + 0
b. "1 + 0"
c. "1" + "0"

9. Which produces the string "Awake"?

18 1 • Statements

Access for free at openstax.org

a. "wake" + "A"
b. "A + wake"
c. "A" + "wake"

10. A user enters "red" after the following line of code.

color = input("What is your favorite color?")

Which produces the output "Your favorite color is red!"?
a. print("Your favorite color is " + color + !)
b. print("Your favorite color is " + "color" + "!")
c. print("Your favorite color is " + color + "!")

11. Which of the following assigns "one-sided" to the variable holiday?
a. holiday = "one" + "sided"
b. holiday = one-sided
c. holiday = "one-" + "sided"

TRY IT

Name length

Write a program that asks the user to input their first and last name separately. Use the following prompts
(example input in bold):

What is your first name? Alan
What is your last name? Turing

The program should then output the length of each name. Based on the example input above, the output
would be:

Your first name is 4 letters long
Your last name is 6 letters long

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-4-string-basics)

TRY IT

Punctuation

Write a Python computer program that:

• Assigns the string "Freda" to a variable, name.

1.4 • String basics 19

• Assigns the string "happy" to a variable, feel.
• Prints the string "Hi Freda!" with a single print() function using the variable name.
• Prints the string "I'm glad you feel happy." with a single print() function using the variable

feel.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-4-string-basics)

1.5 Number basics

Learning objectives
By the end of this section you should be able to

• Use arithmetic operators to perform calculations.
• Explain the precedence of arithmetic operators.

Numeric data types
Python supports two basic number formats, integer and floating-point. An integer represents a whole number,
and a floating-point format represents a decimal number. The format a language uses to represent data is
called a data type. In addition to integer and floating-point types, programming languages typically have a
string type for representing text.

CHECKPOINT

Integer and floating-point

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-5-number-basics)

CONCEPTS IN PRACTICE

Integers, floats, and strings

Assume that x = 1, y = 2.0, and s = "32".

1. What is the output of the following code?

print(x, type(x))

a. 1 'int'.
b. 1.0 <class 'float'>.
c. 1 <class 'int'>.

2. What is the output of the following code?

print(y, type(y))

a. 2.0 <class 'int'>
b. 2.0 <class 'float'>
c. 2 <class 'int'>

20 1 • Statements

Access for free at openstax.org

3. What is the type of the following value?

"12.0"

a. string
b. int
c. float

Basic arithmetic
Arithmetic operators are used to perform mathematical operations like addition, subtraction, multiplication,
and division.

Four basic arithmetic operators exist in Python:

1. Addition (+)
2. Subtraction (-)
3. Multiplication (*)
4. Division (/)

CHECKPOINT

Examples of arithmetic operators

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-5-number-basics)

CONCEPTS IN PRACTICE

Applying arithmetic operators

Assume that x = 7, y = 20, and z = 2.

4. Given the following lines of code, what is the output of the code?

c = 0
c = x - z
c = c + 1
print(c)

a. 1
b. 5
c. 6

5. What is the value of a?

a = 3.5 - 1.5

a. 2
b. 2.0

1.5 • Number basics 21

c. 2.5

6. What is the output of print(x / z)?
a. 3
b. 3.0
c. 3.5

7. What is the output of print(y / z)?
a. 0
b. 10
c. 10.0

8. What is the output of print(z * 1.5)?
a. 2
b. 3
c. 3.0

Operator precedence
When a calculation has multiple operators, each operator is evaluated in order of precedence. Ex: 1 + 2 * 3
is 7 because multiplication takes precedence over addition. However, (1 + 2) * 3 is 9 because parentheses
take precedence over multiplication.

Operator Description Example Result

() Parentheses (1 + 2) * 3 9

** Exponentiation 2 ** 4 16

+, - Positive, negative -math.pi -3.14159

*, / Multiplication, division 2 * 3 6

+, - Addition, subtraction 1 + 2 3

Table 1.4 Operator precedence from highest to lowest.

CHECKPOINT

Order of operations in an arithmetic expression

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-5-number-basics)

22 1 • Statements

Access for free at openstax.org

CONCEPTS IN PRACTICE

Multiple arithmetic operators

9. What is the value of 4 * 3 ** 2 + 1?
a. 37
b. 40
c. 145

10. Which part of (1 + 3) ** 2 / 4 evaluates first?
a. 4 ** 2
b. 1 + 3
c. 2 / 4

11. What is the value of -4 ** 2?
a. -16
b. 16

12. How many operators are in the following statement?

result = -2 ** 3

a. 1
b. 2
c. 3

TRY IT

Values and types

Write a Python computer program that:

1. Defines an integer variable named 'int_a' and assigns 'int_a' with the value 10.
2. Defines a floating-point variable named 'float_a' and assigns 'float_a' with the value 10.0.
3. Defines a string variable named 'string_a' and assigns 'string_a' with the string value "10".
4. Prints the value of each of the three variables along with their type.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-5-number-basics)

TRY IT

Meters to feet

Write a Python computer program that:

1. Assigns the integer value 10 to a variable, meters.
2. Assigns the floating-point value 3.28 to a variable, meter2feet.
3. Calculates 10 meters in feet by multiplying meter by meter2feet. Store the result in a variable, feet.

1.5 • Number basics 23

4. Prints the content of variable feet in the output.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-5-number-basics)

1.6 Error messages

Learning objectives
By the end of this section you should be able to

• Identify the error type and line number in error messages.
• Correct syntax errors, name errors, and indentation errors.

How to read errors
A natural part of programming is making mistakes. Even experienced programmers make mistakes when
writing code. Errors may result when mistakes are made when writing code. The computer requires very
specific instructions telling the computer what to do. If the instructions are not clear, then the computer does
not know what to do and gives back an error.

When an error occurs, Python displays a message with the following information:

1. The line number of the error.
2. The type of error (Ex: SyntaxError).
3. Additional details about the error.

Ex: Typing print "Hello!" without parentheses is a syntax error. In Python, parentheses are required to use
print. When attempting to run print "Hello!", Python displays the following error:

Traceback (most recent call last):
File "/home/student/Desktop/example.py", line 1

print "Hello"
^

SyntaxError: Missing parentheses in call to 'print'. Did you mean print("Hello")?

The caret character (^) shows where Python found the error. Sometimes the error may be located one or two
lines before where the caret symbol is shown because Python may not have discovered the error until then.
Traceback is a Python report of the location and type of error. The word traceback suggests a programmer
trace back in the code to find the error if the error is not seen right away.

Learning to read error messages carefully is an important skill. The amount of technical jargon can be
overwhelming at first. But this information can be very helpful.

CHECKPOINT

Incorrect variable name

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-6-error-messages)

24 1 • Statements

Access for free at openstax.org

CONCEPTS IN PRACTICE

Parts of an error

Given the following error message:

Traceback (most recent call last):
File "/home/student/Desktop/example.py", line 2

print "test"
^

SyntaxError: Missing parentheses in call to 'print'. Did you mean print("test")?

1. What is the filename of the program?
a. Desktop
b. example.py
c. test

2. On which line was the error found?
a. 1
b. 2
c. 3

3. What type of error was found?
a. missing parentheses
b. SyntaxError
c. traceback

Common types of errors
Different types of errors may occur when running Python programs. When an error occurs, knowing the type
of error gives insight about how to correct the error. The following table shows examples of mistakes that
anyone could make when programming.

Mistake Error message Explanation

print("Have a nice
day!"

SyntaxError:
unexpected EOF
while parsing

The closing parenthesis is missing. Python is
surprised to reach the end of file (EOF) before this
line is complete.

word = input("Type a
word:)

SyntaxError: EOL
while scanning
string literal

The closing quote marks are missing. As a result,
the string does not terminate before the end of
line (EOL).

print("You typed:",
wird)

NameError: name
'wird' is not
defined

The spelling of word is incorrect. The
programmer accidentally typed the wrong key.

Table 1.5 Simple mistakes.

1.6 • Error messages 25

Mistake Error message Explanation

prints("You typed:",
word)

NameError: name
'prints' is not
defined

The spelling of print is incorrect. The
programmer accidentally typed an extra letter.

print("Hello")
IndentationError:
unexpected indent

The programmer accidentally typed a space at
the start of the line.

print("Goodbye")
IndentationError:
unexpected indent

The programmer accidentally pressed the Tab key
at the start of the line.

Table 1.5 Simple mistakes.

CONCEPTS IN PRACTICE

Types of errors

For each program below, what type of error will occur?

4. print("Breakfast options:")
print("A. Cereal")
print("B. Eggs")
print("C. Yogurt")

choice = input("What would you like? ")

a. IndentationError
b. NameError
c. SyntaxError

5. birth = input("Enter your birth date:)
print("Happy birthday on ", birth)

a. IndentationError
b. NameError
c. SyntaxError

6. print("Breakfast options:")
print(" A. Cereal")
print(" B. Eggs")
print(" C. Yogurt")
choice = intput("What would you like? ")

a. IndentationError

26 1 • Statements

Access for free at openstax.org

b. NameError
c. SyntaxError

TRY IT

Three errors

The following program has three errors.

• Run the program to find the first error, and correct the corresponding line of code.
• Then run the program again to find and correct the second error.
• Keep running and correcting the program until no errors are found.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-6-error-messages)

TRY IT

Wrong symbols

This code is based on an earlier example, but the code contains several mistakes.

• One line is missing required punctuation, and another line uses incorrect symbols.
• Run the program to find the first error, and correct the corresponding line of code.
• Keep running and correcting the program until no errors are found.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-6-error-messages)

1.7 Comments

Learning objectives
By the end of this section you should be able to

• Write concise, meaningful comments that explain intended functionality of the code.
• Write a docstring (more verbose comment) that describes the program functionality.

The hash character
Comments are short phrases that explain what the code is doing. Ex: Lines 1, 8, and 10 in the following
program contain comments. Each comment begins with a hash character (#). All text from the hash character
to the end of the line is ignored when running the program. In contrast, hash characters inside of strings are
treated as regular text. Ex: The string "Item #1: " does not contain a comment.

When writing comments:

• The # character should be followed by a single space. Ex: # End of menu is easier to read than #End of
menu.

• Comments should explain the purpose of the code, not just repeat the code itself. Ex: # Get the user's
preferences is more descriptive than # Input item1 and item2.

1.7 • Comments 27

EXAMPLE 1.2

Program with three comments

1 # Display the menu options
2 print("Lunch Menu")
3 print("----------")
4 print("Burrito")
5 print("Enchilada")
6 print("Taco")
7 print("Salad")
8 print() # End of menu
9

10 # Get the user's preferences
11 item1 = input("Item #1: ")
12 item2 = input("Item #2: ")

CONCEPTS IN PRACTICE

Simple comments

1. The main purpose of writing comments is to _____.
a. avoid writing syntax errors
b. explain what the code does
c. make the code run faster

2. Which symbol is used for comments in Python?
a. #
b. /*
c. //

3. Which comment is formatted correctly?
a. 0 spaces:

#Get the user input
b. 1 space:

Get the user input
c. 2 spaces:

Get the user input

Code quality
The example program above had two parts: (1) display the menu options, and (2) get the user's preferences.
Together, the blank lines and comments show the overall structure of the program.

Programmers spend more time reading code than writing code. Therefore, making code easier for others to
read and understand is important. Two ways to improve code quality include:

• Separate each part (lines that have a similar purpose) with a blank line.

28 1 • Statements

Access for free at openstax.org

• Write a comment before each part. Not every line needs a comment.

CHECKPOINT

Comments in a program

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-7-comments)

CONCEPTS IN PRACTICE

Code quality

4. Which comment is most useful for the following code?

print("You said:", adj1 + " " + noun1)

a. # Append adj1 and noun1
b. # Print out a bunch of stuff
c. # Show the resulting phrase

5. Where should a blank line be inserted?

1 name = input("Whose birthday is today? ")
2 print("Happy birthday to", name)
3 print("Everyone cheer for", name)

a. After line 1
b. After line 2
c. After line 3

6. To temporarily prevent a line from being run, one might . . .
a. introduce a syntax error in the line.
b. remove the line from the program.
c. insert a # at the beginning of the line.

Documentation
Python programs may optionally begin with a string known as a docstring. A docstring is documentation
written for others who will use the program but not necessarily read the source code. Most of the official
documentation at docs.python.org (https://openstax.org/r/100docstrings) is generated from docstrings.

Documentation can be long, so docstrings are generally written as multi-line strings ("""). Common
elements of a docstring include a one-line summary, a blank line, and a longer description.

CHECKPOINT

Vacations docstring

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-7-comments)

1.7 • Comments 29

CONCEPTS IN PRACTICE

Documentation

7. The main purpose of writing docstrings is to . . .
a. summarize the program's purpose or usage.
b. explain how each part of the code works.
c. maintain a list of ideas for new features.

8. Which of the following is NOT a docstring?
a. """Vacations Madlib."""
b. """Vacations Madlib. This program asks the user for two adjectives and two

nouns, which are then used to print a funny story about a vacation. """
c. # Vacations Madlib.

#
This program asks the user for two adjectives
and two nouns, which are then used to print
a funny story about a vacation.

9. Which docstring is most useful for this program?
a. """Vacations Madlib."""
b. """Vacations Madlib. This program asks the user for two adjectives and two

nouns, which are then used to print a funny story about a vacation. """
c. """Vacations Madlib. This program asks the user for two adjectives and two

nouns, which are then used to print a funny story about a vacation. The code
uses four variables to store the user input: two for the adjectives, and two
for the nouns. The output is displayed on seven lines, beginning with a blank
line after the input. """

TRY IT

Whose birthday

Add two comments to the following program: one for the input, and one for the output. Separate the input
and output with a blank line. Then, compare your comments with the sample solution, and ask yourself the
following questions:

• Are your comments longer or shorter? Why?
• Is the formatting of your comments correct?

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-7-comments)

TRY IT

Gravity calculation

Write a docstring for the following program. The first line of the docstring should explain, in one short

30 1 • Statements

Access for free at openstax.org

sentence, what the program is. The second line of the docstring should be blank. The third and subsequent
lines should include a longer explanation of what the program does. At the end of the docstring, add a line
that says "Author: " followed by your name.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-7-comments)

1.8 Why Python?

Learning objectives
By the end of this section you should be able to

• Name two historical facts about how Python was first created.
• Describe two ways Python is considered a popular language.

Historical background
Python has an interesting history. In 1982, Guido van Rossum (https://openstax.org/r/100vanRossum), the
creator of Python, started working at CWI (https://openstax.org/r/100CWI), a Dutch national research institute.
He joined a team that was designing a new programming language, named ABC, for teaching and prototyping.
ABC's simplicity was ideal for beginners, but the language lacked features required to write advanced
programs.

Several years later, van Rossum joined a different team at CWI working on an operating system. The team
needed an easier way to write programs for monitoring computers and analyzing data. Languages common in
the 1980's were (and still are) difficult to use for these kinds of programs. van Rossum envisioned a new
language that would have a simple syntax, like ABC, but also provide advanced features that professionals
would need.

At first, van Rossum started working on this new language as a hobby during his free time. He named the
language Python because he was a fan of the British comedy group Monty Python (https://openstax.org/r/
100MontyPython). Over the next year, he and his colleagues successfully used Python many times for real
work. van Rossum eventually decided to share Python with the broader programming community online. He
freely shared Python's entire source code so that anyone could write and run Python programs.

Python's first release, known as Version 0.9.0, appeared in 1991, about six years after C++ and four years
before Java. van Rossum's decisions to make the language simple yet advanced, suitable for everyday tasks,
and freely available online contributed to Python's long-term success.

CHECKPOINT

Key decisions

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/1-8-why-
python)

CONCEPTS IN PRACTICE

Python history

1. The Python programming language was named after a _____.

1.8 • Why Python? 31

a. British comedy group
b. Dutch programmer
c. non-venomous snake

2. Which programming language came first?
a. Java
b. Python

3. Which sentence best describes the beginning of Python?
a. CWI hired Guido van Rossum to design a new programming language to compete with C++.
b. Python started out as a hobby and became open source after several years of development.
c. van Rossum posted Python's source code online after working on the language for one year.

EXPLORING FURTHER

For more details about Python's history, see "A brief history of Python (https://openstax.org/r/100history)"
by Vasilisa Sheromova, and "History and Philosophy of Python (https://openstax.org/r/100sheromova)" by
Bernd Klein.

Popularity of Python
Over the years, Python has become a nonprofit organization with a thriving community. Millions of
programmers around the world use Python for all kinds of interesting projects. Hundreds of thousands of
Python libraries have been released as open source software. The Python community is very active and
supportive online, answering questions and sharing code.

One way to see Python's popularity is the TIOBE index (https://openstax.org/r/100TIOBE). TIOBE is a Dutch
company that provides products and services for measuring software code quality. Since 2001, TIOBE has
tracked the popularity of programming languages and posted the results online. Figure 1.2 shows the TIOBE
index over time for five of the most popular languages.

The TIOBE index is based on the number of search engine results for each language. The percentage refers to
how many results belong to that language. Python has been among the top 10 languages every year since
2004. In October 2021, Python became the #1 language on the TIOBE index. No other language but C and Java
had been #1 for the previous 20 years.

Another way to see Python's popularity is to analyze how frequently Python is discussed online. Stack Overflow
(https://openstax.org/r/100overflow) is a question-and-answer website for programmers. Figure 1.3 shows the
number of questions asked each month that were tagged with Python, JavaScript, and so forth. In recent
years, Python has become the most asked about language in programming forums.

32 1 • Statements

Access for free at openstax.org

Figure 1.2 TIOBE programming community index. Source: www.tiobe.com (https://www.tiobe.com/tiobe-index/)

Figure 1.3 Stack Overflow questions per month. Source: data.stackexchange.com (https://data.stackexchange.com/)

CONCEPTS IN PRACTICE

Python popularity

4. According to the TIOBE Index, which two languages were most popular from 2001 to 2021?

1.8 • Why Python? 33

a. C and C++
b. Java and C
c. Python and JavaScript

5. In what year did Python become the most asked about language on Stack Overflow?
a. 2018
b. 2019
c. 2020

6. How long has TIOBE been tracking programming language popularity?
a. since 1991
b. since 2001
c. since 2015

1.9 Chapter summary

This chapter introduced the basics of programming in Python, including:

• print() and input().
• Variables and assignment.
• Strings, integers, and floats.
• Arithmetic, concatenation.
• Common error messages.
• Comments and docstrings.

At this point, you should be able to write programs that ask for input, perform simple calculations, and output
the results. The programming practice below ties together most topics presented in the chapter.

Function Description

print(values) Outputs one or more values, each separated by a space, to the user.

input(prompt)
If present, prompt is output to the user. The function then reads a line of input from the
user.

len(string) Returns the length (the number of characters) of a string.

type(value) Returns the type (or class) of a value. Ex: type(123) is <class 'int'>.

Operator Description

=
(Assignment)

Assigns (or updates) the value of a variable. In Python, variables begin to exist when
assigned for the first time.

Table 1.6 Chapter 1 reference.

34 1 • Statements

Access for free at openstax.org

Function Description

+
(Concatenation) Appends the contents of two strings, resulting in a new string.

+
(Addition) Adds the values of two numbers.

-
(Subtraction) Subtracts the value of one number from another.

*
(Multiplication) Multiplies the values of two numbers.

/
(Division) Divides the value of one number by another.

**
(Exponentiation)

Raises a number to a power. Ex: 3**2 is three squared.

Syntax Description

#
(Comment) All text is ignored from the # symbol to the end of the line.

' or "
(String)

Strings may be written using either kind of quote. Ex: 'A' and "A" represent the same
string. By convention, this book uses double quotes (") for most strings.

"""
(Docstring)

Used for documentation, often in multi-line strings, to summarize a program's purpose
or usage.

Table 1.6 Chapter 1 reference.

TRY IT

Fun facts

Write a program that assigns a variable named number to any integer of your choice. Ex: number = 74.
Then, use this variable to calculate and output the following results:

74 squared is 5476
74 cubed is 405224
One tenth of 74 is 7.4

1.9 • Chapter summary 35

74 plus 123 is 197
74 minus 456 is -382

Run the program multiple times, using a different integer each time. Your output should be mathematically
correct for any integer that you choose.

The point of this exercise is to perform basic arithmetic within a print statement. Do not use any other
variables besides number. Your program should have only one assignment statement (at the beginning).

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-9-chapter-summary)

TRY IT

Mad lib

A mad lib is a word game in which one person asks others for words to substitute into a pre-written story.
The story is then read aloud with the goal of making people laugh.

This exercise is based the Vacations Mad Lib (https://openstax.org/r/100madlibs) available on the Printables
(https://openstax.org/r/100printable) section of MadLibs.com. Write a program that asks the user to input
two adjectives and two nouns (user input in bold):

tranquil
Adjective: scandalous
Noun: pancake
Noun: field

Adjective: tranquil
Adjective: scandalous
Noun: pancake
Noun: field

Use input() to display each prompt exactly as shown. The user's input should be on the same line as the
prompt. Each colon must be followed by exactly one space. After reading the input, the program should
output the following three lines:

tranquil place with your scandalous family.
Usually you go to some place that is near a/an pancake or up on a/an field.

A vacation is when you take a trip to some tranquil place with your scandalous
family.

Usually you go to some place that is near a/an pancake or up on a/an field.

Notice that the first line should be completely blank. Replace the bold words (from the above example) with
the actual words input by the user.

Your final program should have four input statements, three print statements, and at least two comments.

36 1 • Statements

Access for free at openstax.org

For completeness, write an appropriate docstring at the top of the program.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-9-chapter-summary)

1.9 • Chapter summary 37

38 1 • Statements

Access for free at openstax.org

Figure 2.1 credit: modification of work "Grace Hopper at Univac I console", courtesy of the Computer History Museum

Chapter Outline
2.1 The Python shell
2.2 Type conversion
2.3 Mixed data types
2.4 Floating-point errors
2.5 Dividing integers
2.6 The math module
2.7 Formatting code
2.8 Python careers
2.9 Chapter summary

Introduction
A computer program is a sequence of statements that run one after the other. In Python, many statements
consist of one or more expressions. An expression represents a single value to be computed. Ex: The
expression 3*x - 5 evaluates to 7 when x is 4. Learning to recognize expressions opens the door for
programming all kinds of interesting calculations.

Expressions are often a combination of literals, variables, and operators. In the previous example, 3 and 5 are
literals, x is a variable, and * and - are operators. Expressions can be arbitrarily long, consisting of many
calculations. Expressions can also be as short as one value. Ex: In the assignment statement x = 5, the literal
5 is an expression.

The Statements chapter introduced simple expressions like 1 * 2 and "Hi " + "there". This chapter
explores other kinds of expressions for working with numbers and strings. The first section shows a great way
to experiment with expressions using a Python shell. Later sections present more details about integers and
floating-point numbers, explain how to import and use the math module, and show how to make long lines of
code easier to read.

Expressions
2

2.1 The Python shell

Learning objectives
By the end of this section you should be able to

• Use a Python shell to run statements and expressions interactively.
• Explain the function of the up and down arrow keyboard shortcuts.

The interpreter
Python is a high-level language, meaning that the source code is intended for humans to understand.
Computers, on the other hand, understand only low-level machine code made up of 1's and 0's. Programs
written in high-level languages must be translated into machine code to run. This translation process can
happen all at once, or a little at a time, depending on the language.

Python is an interpreted language: the source code is translated one line at a time while the program is
running. The Python interpreter translates source code into machine code and runs the resulting program. If
and when an error occurs, the interpreter stops translating the source code and displays an error message.

Most development environments include a Python shell for experimenting with code interactively. A shell, also
called a console or terminal, is a program that allows direct interaction with an interpreter. The interpreter
usually runs an entire program all at once. But the interpreter can run one line of code at a time within a
Python shell.

CHECKPOINT

Running a Python shell

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-1-the-
python-shell)

CONCEPTS IN PRACTICE

Using a Python shell

1. Python is a _____ language.
a. high-level
b. low-level

2. Which of the following is the most basic line of code the interpreter can run?
a. print(1 + 1)
b. 1 + 1
c. 1

3. What result does the shell display after running the line name = input()?
a. the name that was input
b. nothing (except for >>>)

The arrow keys
A Python shell is convenient for exploring and troubleshooting code. The user can try something, look at the

40 2 • Expressions

Access for free at openstax.org

results, and then try something else. When an error occurs, an error message is displayed, but the program
keeps running. That way, the user can edit the previous line and correct the error interactively.

The acronym REPL (pronounced "rep ul") is often used when referring to a shell. REPL stands for "read-eval-
print loop," which describes the repetitive nature of a shell:

1. Read/input some code
2. Evaluate/run the code
3. Print any results
4. Loop back to step 1

Most shells maintain a history of every line of code the user types. Pressing the up or down arrow key on the
keyboard displays the history. The up arrow displays the previous line; the down arrow displays the next line.
That way, the user can repeat a line without having to type the line again.

CHECKPOINT

Correcting a typo

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-1-the-
python-shell)

CONCEPTS IN PRACTICE

Using the arrow keys

4. Which arrow keys were needed to edit the typo?
a. only the up arrow key
b. the up and down arrows
c. the up and left arrows

5. What keys would the user press to go back two lines?
a. press the up arrow twice
b. press the down arrow twice
c. press the left arrow twice

TRY IT

Exploring the shell

Running code interactively is a great way to learn how Python works. Open a Python shell on your
computer, or use the one at python.org/shell (https://openstax.org/r/100pythonshell). Then enter any
Python code, one line at a time, to see the result. Here are a few expressions to try:

• x = 5
• 3*x - 5
• 3 * (x-5)
• x
• type(1)
• type('1')

2.1 • The Python shell 41

• str(1)
• int('1')
• abs(-5)
• abs(5)
• len("Yo")
• len("HoHo")
• round(9.49)
• round(9.50)

Note: These functions (type, str, int, len, and round) will be explored in more detail later in the chapter.
You can read more about the built-in functions (https://openstax.org/r/100builtin) in the Python
documentation.

TRY IT

Correcting mistakes

Open a Python shell on your computer, or use the one at python.org/shell (https://openstax.org/r/
100pythonshell). Run the following two statements in the shell:

• x = 123
• y = 456

Making mistakes is common while typing in a shell. The following lines include typos and other errors. For
each line: (1) run the line in a shell to see the result, (2) press the up arrow to repeat the line, and (3) edit
the line to get the correct result.

• print("Easy as", X)
• print("y divided by 2 is", y / 0)
• name = intput("What is your name? ")
• print(name, "is", int(name), "letters long.")
• print("That's all folks!)

The expected output, after correcting typos, should look like:

• Easy as 123
• y divided by 2 is 228.0
• (no error/output)
• Stacie is 6 letters long.
• That's all folks!

2.2 Type conversion

Learning objectives
By the end of this section you should be able to

• Explain how the interpreter uses implicit type conversion.
• Use explicit type conversion with int(), float(), and str().

42 2 • Expressions

Access for free at openstax.org

Implicit type conversion
Common operations update a variable such that the variable's data type needs to be changed. Ex: A GPS first
assigns distance with 250, an integer. After a wrong turn, the GPS assigns distance with 252.5, a float. The
Python interpreter uses implicit type conversion to automatically convert one data type to another. Once
distance is assigned with 252.5, the interpreter will convert distance from an integer to a float without the
programmer needing to specify the conversion.

CHECKPOINT

Example: Book ratings

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-2-type-
conversion)

CONCEPTS IN PRACTICE

Implicit type conversion in practice

Consider the example above.

1. What is book_rating's data type on line 7?
a. float
b. integer

2. What would book_rating's data type be if update = 1.0 instead of 0.5?
a. float
b. integer

3. What is the data type of x after the following code executes?

x = 42.0
x = x * 1

a. float
b. integer

Explicit type conversion
A programmer often needs to change data types to perform an operation. Ex: A program should read in two
values using input() and sum the values. Remember input() reads in values as strings. A programmer can
use explicit type conversion to convert one data type to another.

• int() converts a data type to an integer. Any fractional part is removed. Ex: int(5.9) produces 5.
• float() converts a data type to a float. Ex: float(2) produces 2.0.
• str() converts a data type to a string. Ex: str(3.14) produces "3.14".

2.2 • Type conversion 43

CHECKPOINT

Example: Ordering pizza

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-2-type-
conversion)

CONCEPTS IN PRACTICE

Example: Ordering pizza

Consider the example above.

4. Which function converts the input number of slices to a data type that can be used in the calculation?
a. float()
b. input()
c. int()

5. How could line 3 be changed to improve the program overall?
a. Use float() instead of int().
b. Add 1 to the result of int().
c. Add str() around int().

CONCEPTS IN PRACTICE

Using int(), float(), and str()

Given x = 4.5 and y = int(x), what is the value of each expression?

6. y
a. 4
b. 5

7. str(x)
a. 4.5
b. "4.5"

8. float(y)
a. 4.0
b. 4.5

TRY IT

Grade average

The following program computes the average of three predefined exam grades and prints the average
twice. Improve the program to read the three grades from input and print the average first as a float, and

44 2 • Expressions

Access for free at openstax.org

then as an integer, using explicit type conversion. Ignore any differences that occur due to rounding.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-2-type-conversion)

TRY IT

Cups of water

The following program should read in the ounces of water the user drank today and compute the number
of cups drank and the number of cups left to drink based on a daily goal. Assume a cup contains 8 ounces.
Fix the code to calculate cups_drank and cups_left and match the following:

• ounces is an integer representing the ounces the user drank.
• cups_drank is a float representing the number of cups of water drank.
• cups_left is an integer representing the number of cups of water left to drink (rounded down) out of

the daily goal of 8 cups.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-2-type-conversion)

TRY IT

Product as float

The following program reads two integers in as strings. Calculate the product of the two integers, and print
the result as a float.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-2-type-conversion)

2.3 Mixed data types

Learning objectives
By the end of this section you should be able to

• Identify the data types produced by operations with integers, floats, and strings.
• Use operators and type conversions to combine integers, floats, and strings.

Combining integers and floats
Programmers often need to combine numbers of different data types. Ex: A program computes the total for an
online shopping order:

quantity = int(input())
price = float(input())
total = quantity * price
print(total)

quantity is an integer, and price is a float. So what is the data type of total? For input 3 and 5.0, total is

2.3 • Mixed data types 45

a float, and the program prints 15.0.

Combining an integer and a float produces a float. A float is by default printed with at least one figure after the
decimal point and has as many figures as needed to represent the value. Note: Division using the / operator
always produces a float.

CHECKPOINT

Operations combining integers and floats

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-3-mixed-data-types)

CONCEPTS IN PRACTICE

Operations combining integers and floats

1. 8 * 0.25
a. 2
b. 2.0

2. 2 * 9
a. 18
b. 18.0

3. 20 / 2
a. 10
b. 10.0

4. 7 / 2
a. 3.0
b. 3.5

5. 12.0 / 4
a. 3
b. 3.0

6. 8 - 1.0
a. 7.0
b. 7

7. 5 - 0.25
a. 4.5
b. 4.75

Combining numeric types and strings
Easy type conversion in Python can lead a programmer to assume that any data type can be combined with
another. Ex: Noor's program reads in a number from input and uses the number in a calculation. This results in

46 2 • Expressions

Access for free at openstax.org

an error in the program because the input() function by default stores the number as a string. Strings and
numeric data types are incompatible for addition, subtraction, and division. One of the operands needs to be
explicitly converted depending on the goal of arithmetic or string concatenation.

The * operator also serves as the repetition operator, which accepts a string operand and an integer operand
and repeats the string. Ex: "banjo" * 3 produces "banjobanjobanjo".

CHECKPOINT

Adding a string and an integer

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-3-mixed-data-types)

CONCEPTS IN PRACTICE

Operations combining numeric types and strings

8. int('34') + 56
a. '3456'
b. 90
c. '90'

9. str(12) + ' red roses'
a. '12 red roses'
b. '12'
c. Error

10. '50' * 3
a. '150'
b. 150
c. '505050'

11. str(5.2) + 7
a. 12.2
b. '12.2'
c. Error

12. 80.0 + int('100')
a. 180
b. 180.0
c. '180'

13. str(3.14) + '159'
a. 162.14
b. '3.14159'
c. Error

14. 2.0 * 'this'

2.3 • Mixed data types 47

a. 'this'
b. 'thisthis'
c. Error

TRY IT

After the point

Write a program that reads in a string of digits that represents the digits after the decimal point of a
number, num. Concatenate the input string together with '.' and num, and print the result. Ex: If input is
345, the program will print 2.345.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-3-mixed-data-types)

TRY IT

Print n times

Write a program that reads in two strings, str1 and str2, and an integer, count. Concatenate the two
strings with a space in between and a newline ("\n") at the end. Print the resulting string count times.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-3-mixed-data-types)

2.4 Floating-point errors

Learning objectives
By the end of this section you should be able to

• Explain numerical inaccuracies related to floating-point representation.
• Use the round() function to mitigate floating-point errors in output.

Floating-point errors
Computers store information using 0's and 1's. All information must be converted to a string of 0's and 1's. Ex:
5 is converted to 101. Since only two values, 0 or 1, are allowed the format is called binary.

Floating-point values are stored as binary by Python. The conversion of a floating point number to the
underlying binary results in specific types of floating-point errors.

A round-off error occurs when floating-point values are stored erroneously as an approximation. The
difference between an approximation of a value used in computation and the correct (true) value is called a
round-off error.

Ex: Storing the float (0.1)10 results in binary values that actually produce
(0.1000000000000000055511151231257827021181583404541015625)10 when converted back, which is not

48 2 • Expressions

Access for free at openstax.org

exactly equal to (0.1)10.

Print floats with 30 decimal places
print(f'{0.1:.30f}') # prints 0.1
print(f'{0.2:.30f}') # prints 0.2
print(f'{0.4:.30f}') # prints 0.4

0.100000000000000005551115123126
0.200000000000000011102230246252
0.400000000000000022204460492503

Table 2.1 Round-off error. (The example above shows a formatted string or f-string, which are introduced in the
Objects chapter.)

An overflow error occurs when a value is too large to be stored. The maximum and minimum floating-point
values that can be represented are and , respectively. Attempting to store a floating-
point value outside the range leads to an overflow error.

Below, and can be represented, but is too large and causes an overflow error.

print('3.0 to the power of 256 =',
3.0**256)
print('3.0 to the power of 512 = ',
3.0**512)
print('3.0 to the power of 1024 = ',
3.0**1024)

3.0 to the power of 256 =
1.3900845237714473e+122
3.0 to the power of 512 =
1.9323349832288915e+244
3.0 to the power of 1024 =
Traceback (most recent call last):

File "<stdin>", line 3, in <module>
print('3.0 to the power of 1024 = ',

3.0**1024)
OverflowError: (34, 'Numerical result out
of range')

Table 2.2 Overflow error.

CONCEPTS IN PRACTICE

Floating-point errors

For each situation, which error occurs?

1. The statement result = 2.0 * (10.0 ** 500) assigns the variable result with too large of a value.
a. round-off
b. overflow

2. 0.123456789012345678901234567890 * 0.1 produces 0.012345678901234568430878013601.
a. round-off
b. overflow

2.4 • Floating-point errors 49

Floating point round() function
Python's round() function is used to round a floating-point number to a given number of decimal places. The
function requires two arguments. The first argument is the number to be rounded. The second argument
decides the number of decimal places to which the number is rounded. If the second argument is not
provided, the number will be rounded to the closest integer. The round() function can be used to mitigate
floating-point errors.

Ex:

• round(2.451, 2) = 2.45
• round(2.451) = 2

CHECKPOINT

Examples of round() function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-4-floating-point-errors)

CONCEPTS IN PRACTICE

Examples of round() function

3. What is the output of round(6.6)?
a. 6
b. 6.6
c. 7

4. What is the output of round(3.5, 2)?
a. 3
b. 3.5
c. 3.50

5. What is the output of round(12)?
a. 12.0
b. 12
c. 12.00

6. What is the output of round(0.1, 1)?
a. 0.1
b. 0.10
c. 0.1000000000000000055511151231257827021181583404541015625

TRY IT

Inaccurate tips

The following code calculates the tip amount, given a bill amount and the tip ratio. Experiment with the

50 2 • Expressions

Access for free at openstax.org

following bill amounts and tip ratios and see if any inaccuracies may result in calculating the tip amount.

• bill amount: 22.70 and 33.33
• tip ratio: 0.15, 0.18, and 0.20

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-4-floating-point-errors)

TRY IT

Area of a triangle

Complete the following steps to calculate a triangle's area, and print the result of each step. The area of a
triangle is , where b is the base and h is the height.

1. Calculate the area of a triangle with base = 7 and height = 3.5.
2. Round the triangle's area to one decimal place.
3. Round the triangle's area to the nearest integer value.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-4-floating-point-errors)

2.5 Dividing integers

Learning objectives
By the end of this section you should be able to

• Evaluate expressions that involve floor division and modulo.
• Use the modulo operator to convert between units of measure.

Division and modulo
Python provides two ways to divide numbers:

• True division (/) converts numbers to floats before dividing. Ex: 7 / 4 becomes 7.0 / 4.0, resulting in
1.75.

• Floor division (//) computes the quotient, or the number of times divided. Ex: 7 // 4 is 1 because 4 goes
into 7 one time, remainder 3. The modulo operator (%) computes the remainder. Ex: 7 % 4 is 3.

Note: The % operator is traditionally pronounced "mod" (short for "modulo"). Ex: When reading 7 % 4 out loud,
a programmer would say "seven mod four."

CHECKPOINT

Quotient and remainder

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-5-dividing-integers)

2.5 • Dividing integers 51

CONCEPTS IN PRACTICE

Division and modulo

What is the value of each expression?

1. 13 / 5
a. 2
b. 2.6
c. 3

2. 13 % 5
a. 2
b. 2.6
c. 3

3. 1 // 4
a. 0
b. 0.25
c. 1

4. 2 % 0
a. 0
b. 2
c. Error

Unit conversions
Division is useful for converting one unit of measure to another. To convert centimeters to meters, a variable is
divided by 100. Ex: 300 centimeters divided by 100 is 3 meters.

Amounts often do not divide evenly as integers. 193 centimeters is 1.93 meters, or 1 meter and 93
centimeters. A program can use floor division and modulo to separate the units:

• The quotient, 1 meter, is 193 // 100.
• The remainder, 93 centimeters, is 193 % 100.

Programs often use floor division and modulo together. If one line of code floor divides by m, the next line will
likely modulo by m. The unit m by which an amount is divided is called the modulus. Ex: When converting
centimeters to meters, the modulus is 100.

CHECKPOINT

Money and time

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-5-dividing-integers)

52 2 • Expressions

Access for free at openstax.org

CONCEPTS IN PRACTICE

Unit conversions

5. What is the modulus for converting minutes to hours?
a. 40
b. 60
c. 280

6. A program has the line pounds = ounces // 16. What is likely the next line of code?
a. ounces = ounces % 16
b. pounds = ounces % 16
c. ounces = ounces - pounds * 16

TRY IT

Arrival time

Having a mobile device can be a lifesaver on long road trips. Programs like Google Maps find the shortest
route and estimate the time of arrival. The time of arrival is based on the current time plus how long the
trip will take.

Write a program that (1) inputs the current time and estimated length of a trip, (2) calculates the time of
arrival, and (3) outputs the results in hours and minutes. Your program should use the following prompts
(user input in bold):

13
Current minute (0-59)? 25
Trip time (in minutes)? 340

Current hour (0-23)? 13
Current minute (0-59)? 25
Trip time (in minutes)? 340

In this example, the current time is 13:25 (1:25pm). The trip time is 340 minutes (5 hours and 40 minutes).
340 minutes after 13:25 is 19:05 (7:05pm). Your program should output the result in this format:

Arrival hour is 19
Arrival minute is 5

The arrival hour must be between 0 and 23. Ex: Adding 120 minutes to 23:00 should be 1:00, not 25:00. The
arrival minute must be between 0 and 59. Ex: Adding 20 minutes to 8:55 should be 9:15, not 8:75.

Hint: Multiply the current hour by 60 to convert hours to minutes. Then, calculate the arrival time, in total
minutes, as an integer.

Your code must not use Python keywords from later chapters, such as if or while. The solution requires

2.5 • Dividing integers 53

only addition, multiplication, division, and modulo.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-5-dividing-integers)

TRY IT

Change machine

Self-checkout aisles are becoming increasingly popular at grocery stores. Customers scan their own items,
and a computer determines the total purchase amount. Customers who pay in cash insert dollar bills, and a
machine automatically dispenses change in coins.

That's where this program comes into the story. Your task is to calculate how many of each coin to
dispense. Your program should use the following prompts (user input in bold):

18.76
Cash payment? 20

Total amount? 18.76
Cash payment? 20

You may assume that the cash paid will always be a whole number (representing dollar bills) that is greater
than or equal to the total amount. The program should calculate and output the amount of change due
and how many dollars, quarters, dimes, nickels, and pennies should be dispensed:

Change Due $1.24

Dollars: 1
Quarters: 0

Dimes: 2
Nickels: 0
Pennies: 4

Hint: Calculate the total change, in cents, as an integer. Use the round() function to avoid floating-point
errors.

Your code must not use Python keywords from later chapters, such as if or while. The solution requires
only subtraction, multiplication, division, and modulo.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-5-dividing-integers)

2.6 The math module

Learning objectives
By the end of this section you should be able to

54 2 • Expressions

Access for free at openstax.org

• Distinguish between built-in functions and math functions.
• Use functions and constants defined in the math module.

Importing modules
Python comes with an extensive standard library (https://openstax.org/r/100pythlibrary) of modules. A
module is previously written code that can be imported in a program. The import statement defines a
variable for accessing code in a module. Import statements often appear at the beginning of a program.

The standard library also defines built-in functions such as print(), input(), and float(). A built-in
function is always available and does not need to be imported. The complete list of built-in functions
(https://openstax.org/r/100builtin) is available in Python's official documentation.

A commonly used module in the standard library is the math module (https://openstax.org/r/
100mathmodule). This module defines functions such as sqrt() (square root). To call sqrt(), a program
must import math and use the resulting math variable followed by a dot. Ex: math.sqrt(25) evaluates to
5.0.

The following program imports and uses the math module, and uses built-in functions for input and output.

EXAMPLE 2.1

Calculating the distance between two points

import math

x1 = float(input("Enter x1: "))
y1 = float(input("Enter y1: "))
x2 = float(input("Enter x2: "))
y2 = float(input("Enter y2: "))

distance = math.sqrt((x2-x1)**2 + (y2-y1)**2)
print("The distance is", distance)

CHECKPOINT

Importing math in a Python shell

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-6-the-
math-module)

CONCEPTS IN PRACTICE

Built-in functions and math module

1. In the above example, when evaluating math, why did the interpreter raise a NameError?
a. The math module was not available.

2.6 • The math module 55

b. The variable pie was spelled incorrectly.
c. The math module was not imported.

2. Which of these functions is builtin and does not need to be imported?
a. log()
b. round()
c. sqrt()

3. Which expression results in an error?
a. math.abs(1)
b. math.log(1)
c. math.sqrt(1)

Mathematical functions
Commonly used math functions and constants are shown below. The complete math module listing
(https://openstax.org/r/100mathmodule) is available in Python's official documentation.

Constant Value Description

math.e Euler's number: the base of the natural logarithm.

math.pi The ratio of the circumference to the diameter of a circle.

math.tau The ratio of the circumference to the radius of a circle. Tau is equal to 2π.

Table 2.3 Example constants in the math module.

Function Description Examples

Number-theoretic

math.ceil(x)
The ceiling of x: the smallest integer greater than or
equal to x.

math.ceil(7.4) 8
math.ceil(-7.4) -7

math.floor(x)
The floor of x: the largest integer less than or equal
to x.

math.floor(7.4) 7
math.floor(-7.4) -8

Power and logarithmic

math.log(x) The natural logarithm of x (to base e).
math.log(math.e) 1.0
math.log(0) ValueError:
math domain error

Table 2.4 Example functions in the math module.

56 2 • Expressions

Access for free at openstax.org

Function Description Examples

math.log(x,
base)

The logarithm of x to the given base.
math.log(8, 2) 3.0
math.log(10000, 10) 4.0

math.pow(x,
y)

x raised to the power y. Unlike the ** operator,
math.pow() converts x and y to type float.

math.pow(3, 0) 1.0
math.pow(3, 3) 27.0

math.sqrt(x) The square root of x.

math.sqrt(9) 3.0
math.sqrt(-9)
ValueError: math domain
error

Trigonometric

math.cos(x) The cosine of x radians.
math.cos(0) 1.0
math.cos(math.pi) -1.0

math.sin(x) The sine of x radians.
math.sin(0) 0.0
math.sin(math.pi/2) 1.0

math.tan(x) The tangent of x radians.

math.tan(0) 0.0
math.tan(math.pi/4)
0.999
(Round-off error; the result
should be 1.0.)

Table 2.4 Example functions in the math module.

CONCEPTS IN PRACTICE

Using math functions and constants

4. What is the value of math.tau/2?
a. approximately 2.718
b. approximately 3.142
c. approximately 6.283

5. What is the value of math.sqrt(100)?
a. the float 10.0
b. the integer 10
c. ValueError: math domain error

6. What is πr2 in Python syntax?
a. pi * r**2

2.6 • The math module 57

b. math.pi * r**2
c. math.pi * r*2

7. Which expression returns the integer 27?
a. 3 ** 3
b. 3.0 ** 3
c. math.pow(3, 3)

TRY IT

Quadratic formula

In algebra, a quadratic equation is written as . The coefficients a, b, and c are known
values. The variable x represents an unknown value. Ex: has the coefficients , ,
and . The quadratic formula provides a quick and easy way to solve a quadratic equation for x:

The plus-minus symbol indicates the equation has two solutions. However, Python does not have a plus-
minus operator. To use this formula in Python, the formula must be separated:

Write the code for the quadratic formula in the program below. Test your program using the following
values for a, b, and c:

Provided input Expected output

a b c x1 x2

1 0 -4 2.0 -2.0

1 2 -3 1.0 -3.0

2 1 -1 0.5 -1.0

Table 2.5

58 2 • Expressions

Access for free at openstax.org

Provided input Expected output

0 1 1 division by zero

1 0 1 math domain error

Table 2.5

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-6-the-
math-module)

TRY IT

Cylinder formulas

In geometry, the surface area and volume of a right circular cylinder can be computed as follows:

Write the code for these two formulas in the program below. Hint: Your solution should use both math.pi
and math.tau. Test your program using the following values for r and h:

Provided input Expected output

r h area volume

0 0 0.0 0.0

1 1 12.57 3.14

1 2 18.85 6.28

2.5 4.8 114.67 94.25

3.1 7.0 196.73 211.33

Table 2.6

If you get an error, try to look up what that error means.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-6-the-
math-module)

2.6 • The math module 59

2.7 Formatting code

Learning objectives
By the end of this section you should be able to

• Identify good spacing for expressions and statements.
• Write multi-line statements using implicit line joining.

Recommended spacing
Most spaces in Python code are ignored when running programs; however, spaces at the start of a line are very
important. The following two programs are equivalent:

• Good spacing:

name = input("Enter someone's name: ")
place = input("Enter a famous place: ")
print(name, "should visit", place + "!")

• Poor spacing:

name=input ("Enter someone's name: ")
place =input("Enter a famous place: ")
print(name,"should visit" , place+ "!")

One might argue that missing or extra spaces do not matter. After all, the two programs above run exactly the
same way. However, the "poor spacing" version is more difficult to read. Code like name=input and place+
might lead to confusion.

Good programmers write code that is as easy to read as possible. That way, other programmers are more
likely to understand the code. To encourage consistency, the Python community has a set of guidelines about
where to put spaces and blank lines, what to name variables, how to break up long lines, and other important
topics.

PYTHON STYLE GUIDE

PEP 8 (https://openstax.org/r/100PEP8) is the official style guide for Python. PEP stands for Python
Enhancement Proposal. Members of the Python community write PEPs to document best practices and
propose new features. The table below is based on guidelines from PEP 8 under the heading Whitespace in
Expressions and Statements (https://openstax.org/r/100whitespace).

60 2 • Expressions

Access for free at openstax.org

Guideline Example Common Mistakes

Parentheses: no space before or after. print("Go team!")
print ("Go team!")
print("Go team!")

Commas: no space before, one space
after.

print("Hello", name)
print("Hello" , name)
print("Hello",name)

Assignment: one space before and after
the =.

name = input("Your
name? ")

name=input("Your name?
")
name= input("Your
name? ")
name =input("Your
name? ")

Concatenation: one space before and
after the +.

print("Hi", name + "!")
print("Hi", name+"!")
print("Hi", name+ "!")
print("Hi", name +"!")

Arithmetic: use space to show lower
precedence.

x**2 + 5*x - 8
x ** 2 + 5 * x - 8
x ** 2+5 * x-8
x**2+5*x-8

Table 2.7 Guidelines for spaces.

CONCEPTS IN PRACTICE

Recommended spacing

1. Which statement is formatted properly?
a. name = input("What is your name? ")
b. name = input ("What is your name? ")
c. name = input("What is your name? ")

2. Which statement is formatted properly?
a. name=name+"!"
b. name = name+"!"
c. name = name + "!"

3. Which statement is formatted properly?
a. print("Hello",name)
b. print("Hello", name)
c. print("Hello " , name)

4. Which expression is formatted properly?

2.7 • Formatting code 61

a. b**2 - 4*a*c
b. b ** 2 - 4 * a * c
c. b**2 - 4*a * c

Automatic concatenation
Long strings make Python programs difficult to read. Ex: This program prints the first sentence of the US
Declaration of Independence (https://openstax.org/r/100declaration):

print("The unanimous Declaration of the thirteen united States of America, When in the Course of human
events, it becomes necessary for one people to dissolve the political bands which have connected them with
another, and to assume among the powers of the earth, the separate and equal station to which the Laws of
Nature and of Nature's God entitle them, a decent respect to the opinions of mankind requires that they
should declare the causes which impel them to the separation.")

PEP 8 recommends that each line of code be less than 80 characters long. That way, programmers won't need
to scroll horizontally to read the code. The above program can be rewritten by breaking up the original string:

print("The unanimous Declaration of the thirteen united States of "
"America, When in the Course of human events, it becomes "
"necessary for one people to dissolve the political bands "
"which have connected them with another, and to assume among "
"the powers of the earth, the separate and equal station to "
"which the Laws of Nature and of Nature's God entitle them, a "
"decent respect to the opinions of mankind requires that they "
"should declare the causes which impel them to the separation.")

For convenience, Python automatically concatenates multiple strings. The + operator is not required in this
situation.

CHECKPOINT

String concatenation

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-7-formatting-code)

CONCEPTS IN PRACTICE

String literal concatenation

5. Which line prints the word "grandmother"?
a. print(grandmother)
b. print("grand" "mother")
c. print("grand", "mother")

6. What string is equivalent to "Today is" "a holiday"?

62 2 • Expressions

Access for free at openstax.org

a. 'Today isa holiday'
b. 'Today is a holiday'
c. 'Today is" "a holiday'

7. If name is "Ada", what does print("Hello," name) output?
a. Hello,Ada
b. Hello, Ada
c. SyntaxError

Multi-line statements
Most statements in a Python program need only one line of code. But occasionally longer statements need to
span multiple lines. Python provides two ways to write multi-line statements:

• Explicit line joining, using \ characters:

decl = "The unanimous Declaration of the thirteen united States of " \
"America, When in the Course of human events, it becomes " \
"necessary for one people to dissolve the political bands..."

• Implicit line joining, using parentheses:

decl = ("The unanimous Declaration of the thirteen united States of "
"America, When in the Course of human events, it becomes "
"necessary for one people to dissolve the political bands...")

Implicit line joining is more common, since many statements and expressions use parentheses anyway. PEP 8
recommends avoiding the use of explicit line joining whenever possible.

CONCEPTS IN PRACTICE

Multi-line statements

8. Which character is used for explicit line joining?
a. /
b. \
c. |

9. What is the best way to print a very long string?
a. Break up the string into multiple smaller strings.

print("..." # first part of string
"..." # next part of string
"...")

b. Print the string using multiple print statements.
print("...") # first part of string
print("...") # next part of string
print("...")

2.7 • Formatting code 63

c. Assign the string to a variable and print the variable.
text = "..." # the entire string
print(text)

10. Which example consists of two statements?
a. print("Happy "

"New Year")
b. saying = ("Happy "

"New Year")
c. saying= "Happy "

"New Year"

TRY IT

Spaced out

The following code works correctly but is formatted poorly. In particular, the code does not include spaces
recommended by PEP 8. Furthermore, two of the lines are about 90 characters long. Reformat the code to
follow the guidelines in this section. Be careful not to change the behavior of the code itself.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-7-formatting-code)

TRY IT

Five quotes

Write a program that prints the following five quotes (source: BrainyQuote (https://openstax.org/r/
100brainyquote)) from Guido van Rossum, the creator of Python. Your program should have exactly five
print statements, one for each quote:

1. "If you're talking about Java in particular, Python is about the best fit
you can get amongst all the other languages. Yet the funny thing is, from a
language point of view, JavaScript has a lot in common with Python, but it is sort
of a restricted subset."

2. "The second stream of material that is going to come out of this project is
a programming environment and a set of programming tools where we really want to
focus again on the needs of the newbie. This environment is going to have to be
extremely user-friendly."

3. "I have this hope that there is a better way. Higher-level tools that
actually let you see the structure of the software more clearly will be of
tremendous value."

4. "Now, it's my belief that Python is a lot easier than to teach to students
programming and teach them C or C++ or Java at the same time because all the
details of the languages are so much harder. Other scripting languages really don't
work very well there either."

64 2 • Expressions

Access for free at openstax.org

5. "I would guess that the decision to create a small special purpose language
or use an existing general purpose language is one of the toughest decisions that
anyone facing the need for a new language must make."

Notice that all of these lines are longer than 80 characters, and some contain single quote marks. Format
the code using multi-line statements and escape sequences as necessary.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-7-formatting-code)

2.8 Python careers

Learning objectives
By the end of this section you should be able to

• Summarize how Python is used in fields other than CS and IT.
• Describe two different kinds of applications made with Python.

Fields and applications
Learning Python opens the door to many programming-related careers. Example job titles include software
engineer, data scientist, web developer, and systems analyst. These jobs often require a degree in computer
science (CS), information technology (IT), or a related field. However, programming is not limited to these fields
and careers.

Many professionals use Python to support the work they do. Python programs can automate tasks and solve
problems quickly. Table 2.8 shows a few examples of Python outside of computing fields. Knowing how to
program is a useful skill that can enhance any career.

Python is a versatile language that supports many kinds of applications. Table 2.9 shows a few examples of
programs that can be written in Python. Given Python's usefulness and popularity, Python is a great language
to learn. A supportive community of professionals and enthusiasts is ready to help.

Field Example use of Python

Business An accountant writes a Python program to generate custom sales reports.

Education A teacher writes a Python program to organize homework submissions.

Fine arts An artist writes a Python program to operate an interactive art display.

Humanities A linguist writes a Python program to analyze changes in slang word usage.

Science A biologist writes a Python program to analyze DNA sequences for cancer.

Table 2.8 Python outside of CS and IT.

2.8 • Python careers 65

Application Example use of Python

Artificial
intelligence

An engineer develops models to support image and voice recognition. Ex: TensorFlow
library (https://openstax.org/r/100tensorflow).

Data
visualization

A statistician creates charts to make sense of large amounts of data. Ex: Matplotlib library
(https://openstax.org/r/100matplotlib).

General
purpose

Most programs in this book are general. Ex: Read inputs, perform calculations, print
results.

Scientific
computing

Python is very useful for conducting experiments and analyzing data. Ex: The SciPy project
(https://openstax.org/r/100scipyproject).

Web
development

Python can run interactive websites. Ex: Instagram is built with Django
(https://openstax.org/r/100django), a Python framework.

Table 2.9 Applications built with Python.

CONCEPTS IN PRACTICE

Fields and applications

1. Which of the following fields use Python to support their work?
a. geography
b. health care
c. political science
d. all of the above

2. Which of the following Python libraries creates charts and plots?
a. Matplotlib
b. SciPy
c. TensorFlow

3. Which of the following applications were built with Python?
a. Facebook
b. Instagram
c. WhatsApp

EXPLORING FURTHER

For more examples of applications that can be built with Python, see "Top 12 Fascinating Python
Applications in Real-World" (https://openstax.org/r/100top12apps) by Rohit Sharma. For more information
about Python related careers, see "What Does a Python Developer Do?" (https://openstax.org/r/100careers)
in BrainStation's career guide.

66 2 • Expressions

Access for free at openstax.org

2.9 Chapter summary

Highlights from this chapter include:

• Expressions and statements can be run interactively using a shell.
• Input strings can be converted to other types. Ex: int(input()).
• Strings can be concatenated with other types. Ex: "$" + str(cost).
• Floats are subject to round-off and overflow errors.
• Integers can be divided exactly using // and %.
• Modules like math provide many useful functions.
• Formatting long lines helps improve readability.

At this point, you should be able to write programs that ask for input of mixed types, perform mathematical
calculations, and output results with better formatting. The programming practice below ties together most
topics presented in the chapter.

Function Description

abs(x) Returns the absolute value of x.

int(x) Converts x (a string or float) to an integer.

float(x) Converts x (a string or integer) to a float.

str(x) Converts x (a float or integer) to a string.

round(x,
ndigits)

Rounds x to ndigits places after the decimal point. If ndigits is omitted, returns the
nearest integer to x.

Operator Description

s * n
(Repetition)

Creates a string with n copies of s. Ex: "Ha" * 3 is "HaHaHa".

x / y
(Real division)

Divides x by y and returns the entire result as a float. Ex: 7 / 4 is 1.75.

x // y
(Floor division)

Divides x by y and returns the quotient as an integer. Ex: 7 // 4 is 1.

x % y
(Modulo)

Divides x by y and returns the remainder as an integer. Ex: 7 % 4 is 3.

Table 2.10 Chapter 2 reference.

2.9 • Chapter summary 67

TRY IT

Baking bread

The holidays are approaching, and you need to buy ingredients for baking many loaves of bread. According
to a recipe by King Arthur Flour (https://openstax.org/r/100kingarthurflr), you will need the following
ingredients for each loaf:

• 1 1/2 teaspoons instant yeast
• 1 1/2 teaspoons salt
• 1 1/2 teaspoons sugar
• 2 1/2 cups all-purpose flour
• 2 cups sourdough starter
• 1/2 cup lukewarm water

Write a program that inputs the following variables: bread_weight (float), serving_size (float), and
num_guests (int). The output will look like the following:

Note: The measures the program comes up with are exact, but to bake, the baker would have to use some
approximation. Ex: 9.765625 cups all-purpose flour really means 9 and 3/4 cups.

For 25 people, you will need 3.90625 loaves of bread:

5.859375 teaspoons instant yeast
5.859375 teaspoons salt
5.859375 teaspoons sugar
9.765625 cups all-purpose flour
7.8125 cups sourdough starter
1.953125 cups lukewarm water

In the above output, bread_weight is 16.0 ounces, serving_size is 2.5 ounces, and num_guests is 25
people. Use these three variables to calculate the number of loaves needed.

Make sure your output matches the above example exactly. Notice that each line of the ingredients begins
with two spaces.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-9-chapter-summary)

TRY IT

Tip calculator

Google has a variety of search tricks (https://openstax.org/r/100googletricks) that present users with
instant results. If you search on Google for tip calculator (https://openstax.org/r/100tipcalculatr), an
interactive tool is included at the top of the results. The goal of this exercise is to implement a similar tip
calculator.

Begin by prompting the user to input the following values (user input in bold):

68 2 • Expressions

Access for free at openstax.org

43.21
Percentage to tip: 18
Number of people: 2

Enter bill amount: 43.21
Percentage to tip: 18
Number of people: 2

Then calculate the tip amount and total amount for the bill, based on the user input. Output the results
using this format:

Tip amount: $7.78
Total amount: $50.99

Tip per person: $3.89
Total per person: $25.49

Your program should output all dollar amounts rounded to two decimal places. The output should be
exactly six lines, as shown above. Notice the blank line before each section of the output. Notice also the
space before but not after the dollar sign.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-9-chapter-summary)

2.9 • Chapter summary 69

70 2 • Expressions

Access for free at openstax.org

Figure 3.1 credit: modification of work "Port of Melbourne", by Chris Phutully/Flickr, CC BY 2.0

Chapter Outline
3.1 Strings revisited
3.2 Formatted strings
3.3 Variables revisited
3.4 List basics
3.5 Tuple basics
3.6 Chapter summary

Introduction
An object is a single unit of data in a Python program. So far, this book has introduced three types of objects:
strings, integers, and floats. This chapter takes a closer look at how strings are represented and how integers
and floats can be formatted. To better understand what an object actually is, the relationship between
variables and objects is emphasized. The chapter also introduces two types of containers: lists and tuples. A
container is an object that can hold an arbitrary number of other objects. At the end of this chapter, you will
be able to solve more complex problems using fewer variables.

3.1 Strings revisited

Learning objectives
By the end of this section you should be able to

• Extract a specific character from a string using an index.
• Use escape sequences to represent special characters.

Indexes
A string is a sequence of zero or more characters. Each character has an index that refers to the character's
position. Indexes are numbered from left to right, starting at 0. Indexes are also numbered from right to left,

Objects
3

starting at -1.

CHECKPOINT

String indexes

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-1-strings-revisited)

CONCEPTS IN PRACTICE

String indexes

1. What is the index of the second character in a string?
a. 1
b. 2
c. -2

2. If s = "Python!", what is the value of s[1] + s[-1]?
a. "P!"
b. "y!"
c. "yn"

3. If s = "Python!", what type of object is s[0]?
a. character
b. integer
c. string

Unicode
Python uses Unicode, the international standard for representing text on computers. Unicode defines a
unique number, called a code point, for each possible character. Ex: "P" has the code point 80, and "!" has
the code point 33.

The built-in ord() function converts a character to a code point. Ex: ord("P") returns the integer 80.
Similarly, the built-in chr() function converts a code point to a character. Ex: chr(33) returns the string "!".

Unicode is an extension of ASCII, the American Standard Code for Information Interchange. Originally, ASCII
defined only 128 code points, enough to support the English language. Unicode defines over one million code

72 3 • Objects

Access for free at openstax.org

points and supports most of the world's written languages.

32 (space)
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?

64 @
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _

96 `
97 a
98 b
99 c

100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 (delete)

Table 3.1 Character values. This table shows code points 32 to 127 as defined by ASCII and Unicode. Code
points 0 to 31 are non-printable characters that were used for telecommunications.

CONCEPTS IN PRACTICE

ord() and chr()

4. What is the code point for the letter A?
a. 1
b. 65

3.1 • Strings revisited 73

c. 97

5. What value does ord("0") return?
a. 0
b. 48
c. Error

6. What does chr(126) return?
a. ~
b. "~"
c. Error

Special characters
An escape sequence uses a backslash (\) to represent a special character within a string.

Escape
sequence

Meaning Example Screen output

\n
A newline character that indicates the end
of a line of text.

print("Escape\
nsequence!")

Escape
sequence!

\t
A tab character; useful for indenting
paragraphs or aligning text on multiple
lines.

print("Escape\
tsequence!")

Escape sequence!

\'
A single quote; an alternative to enclosing
the string in double quotes.

print('I\'ll try
my best!')

I'll try my best

\"
A double quote; an alternative to
enclosing the string in single quotes.

print("I heard
you said
\"Yes\"")

I heard you said
"Yes"

\\ A backslash character.
print("This
prints a \\")

This prints a \

Table 3.2 Common escape sequences.

74 3 • Objects

Access for free at openstax.org

CONCEPTS IN PRACTICE

Tabs and newlines

7. Which of the following is an escape sequence?
a. t
b. /t
c. \t

8. Which statement prints a backslash (\) to the screen?
a. print(\\)
b. print(\"\")
c. print("\\")

9. Which statement prints Enter and here on separate lines?
a. print("Enter here")
b. print("Enter" + \n + "here")
c. print("Enter" + "\n" + "here")

TRY IT

Hopper quote

Grace Hopper (https://openstax.org/r/100gracehopper) (1906–1992) was a famous computer scientist (and
rear admiral in the US Navy!) who came up with the idea of machine-independent programming languages.
She envisioned a programming language based on English and made many contributions that paved the
way for modern programming languages, including Python.

Write a program that prints the following text, including the quotation marks. Your program may not use
single quotes (') anywhere in the code. The last line must be indented with a tab character.

"To me programming is more than an important practical art.
It is also a gigantic undertaking in the foundations of knowledge."

-- Grace Hopper

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-1-strings-revisited)

TRY IT

Shift cipher

During the Roman Empire, Julius Caesar (100–44 BCE) used a simple technique to encrypt private
messages. Each letter of the message was replaced with the third next letter of the alphabet. Ex: If the
message was CAT, the C became F, the A became D, and the T became W, resulting in the message FDW.
This technique is known as a shift cipher because each letter is shifted by some amount. In Caesar's case,

3.1 • Strings revisited 75

the amount was three, but other amounts (besides 0) would work too.

Write a program that prompts the user to input the following two values (example input in bold):

Enter a 3-letter word: CAT
Shift by how many letters? 3

The program should then shift each letter of the word by the desired amount. Based on the example above,
the output would be:

The secret message is: FDW

Hint: Use the ord() function to convert each letter to an integer, add the shift amount to each integer, use
the chr() function to convert each integer to a character, and concatenate the resulting characters.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-1-strings-revisited)

3.2 Formatted strings

Learning objectives
By the end of this section you should be able to

• Use f-strings to simplify output with multiple values.
• Format numbers with leading zeros and fixed precision.

F-strings
A formatted string literal (or f-string) is a string literal that is prefixed with "f" or "F". A replacement field
is an expression in curly braces ({}) inside an f-string. Ex: The string f"Good morning, {first} {last}!"
has two replacement fields: one for a first name, and one for a last name. F-strings provide a convenient way
to combine multiple values into one string.

CHECKPOINT

Printing an f-string

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-2-formatted-strings)

CONCEPTS IN PRACTICE

Basic f-strings

1. What is the output of the following code?

animal = "dog"

76 3 • Objects

Access for free at openstax.org

says = "bark"
print(f"My {animal} says {says} {says} {says}")

a. My dog bark bark bark bark
b. My dog says bark bark bark
c. Error

2. What is the output of the following code?

temp = "hot"
food = "potato"
print("{temp} {food}")

a. {temp} {food}
b. hot potato
c. Error

3. How can the following code be rewritten using an f-string?

print(x, "+", y, "=", x + y)

a. print(f"x + y = {x+y}")
b. print(f"{x + y} = {x + y}")
c. print(f"{x} + {y} = {x+y}")

Formatting numbers
Programs often need to display numbers in a specific format. Ex: When displaying the time, minutes are
formatted as two-digit integers. If the hour is 9 and the minute is 5, then the time is "9:05" (not "9:5").

In an f-string, a replacement field may include a format specifier introduced by a colon. A format specifier
defines how a value should be formatted for display. Ex: In the string f"{hour}:{minute:02d}", the format
specifier for minute is 02d.

Format Description Example Result

d Decimal integer (default integer format). f"{12345678:d}" '12345678'

,d Decimal integer, with comma separators. f"{12345678:,d}" '12,345,678'

10d Decimal integer, at least 10 characters wide. f"{12345678:10d}" ' 12345678'

010d Decimal integer, at least 10 characters wide, with
leading zeros.

f"{12345678:010d}" '0012345678'

Table 3.3 Example format specifiers. The table shows common ways that numbers can be formatted. Many more formatting
options are available and described in Python's Format Specification Mini-Language (https://docs.python.org/3/library/
string.html#formatspec).

3.2 • Formatted strings 77

Format Description Example Result

f Fixed-point (default is 6 decimal places). f"{math.pi:f}" '3.141593'

.4f Fixed-point, rounded to 4 decimal places. f"{math.pi:.4f}" '3.1416'

8.4f Fixed-point, rounded to 4 decimal places, at least 8
characters wide.

f"{math.pi:8.4f}" ' 3.1416'

08.4f Fixed-point, rounded to 4 decimal places, at least 8
characters wide, with leading zeros.

f"{math.pi:08.4f}" '003.1416'

Table 3.3 Example format specifiers. The table shows common ways that numbers can be formatted. Many more formatting
options are available and described in Python's Format Specification Mini-Language (https://docs.python.org/3/library/
string.html#formatspec).

CONCEPTS IN PRACTICE

Formatting numbers

4. What f-string formats a date as MM/DD/YYYY?
a. f"{month:02d}/{day:02d}/{year}"
b. f"{month:2d}/{day:2d}/{year}"
c. f"{month}/{day}/{year}"

5. What statement displays the variable money rounded to two decimal places?
a. print(f"{money:2d}")
b. print(f"{money:2f}")
c. print(f"{money:.2f}")

6. What format specifier displays a floating-point number with comma separators and rounded to two
decimal places?
a. .2,f
b. ,.2f
c. ,d.2f

TRY IT

Mad lib (f-string)

A mad lib (https://openstax.org/r/100fstring) is a funny story that uses words provided by a user. The
following mad lib is based on four words (user input in bold):

Enter a name: Buster
Enter a noun: dog

78 3 • Objects

Access for free at openstax.org

Enter an adjective: super
Verb ending in -ing: swimming

Buster, the super dog, likes to go swimming.

Most of the code for this mad lib is already written. Complete the code below by writing the f-string.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-2-formatted-strings)

TRY IT

Wage calculator

You just landed a part-time job and would like to calculate how much money you will earn. Write a program
that inputs the time you start working, the time you stop working, and your hourly pay rate (example input
in bold):

Starting hour: 9
Starting minute: 30
Stopping hour: 11
Stopping minute: 0
Hourly rate: 15

Based on the user input, your program should calculate and display the following results:

Worked 9:30 to 11:00
Total hours: 1.5
Payment: $22.50

For this exercise, you need to write code that (1) calculates the total payment and (2) formats the three
output lines. Use f-strings and format specifiers to display two-digit minutes, one decimal place for hours,
and two decimal places for payment. The input code has been provided as a starting point.

Assume the use of a 24-hour clock. Ex: 16:15 is used instead of 4:15pm.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-2-formatted-strings)

3.3 Variables revisited

Learning objectives
By the end of this section you should be able to

• Distinguish between variables, objects, and references.
• Draw memory diagrams with integers, floats, and strings.

3.3 • Variables revisited 79

References to objects
In Python, every variable refers to an object. The assignment statement message = "Hello" makes the
variable message refer to the object "Hello". Multiple variables may refer to the same object. Ex: greeting
= message makes greeting refer to the same object as message. A memory diagram shows the
relationship between variables and objects.

CHECKPOINT

Example memory diagram

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-3-variables-revisited)

CONCEPTS IN PRACTICE

Variables and objects

1. How many assignment statements are in the above animation?
a. 2
b. 3
c. 4

2. Which of the following best describes the objects assigned?
a. two float objects
b. two int objects, one float object
c. one int object, one float object

3. What symbol is used to show a variable's current value?
a. an arrow
b. a small black box
c. a rounded box

EXPLORING FURTHER

Python Tutor (https://openstax.org/r/100pythontutor) is a free online tool for visualizing code execution. A
user can enter any Python code, click Visualize Execution, and then click the Next button to run the code
one line at a time. Here is the rating and score example (https://openstax.org/r/100ratingscore) from the
animation above.

Python Tutor is also useful for drawing memory diagrams similar to the ones in this book. Before clicking
Visualize Execution, change the middle option from "inline primitives, don't nest objects [default]" to
"render all objects on the heap (Python/Java)" as shown in the following screenshot:

80 3 • Objects

Access for free at openstax.org

Figure 3.2

Properties of objects
Every object has an identity, a type, and a value:

• An object's identity is a unique integer associated with the object. Generally, this integer refers to the
memory location where the object is stored. Once created, an object's identity never changes. The built-in
id() function returns the object's identity.

• An object's type determines the possible values and operations of an object. Ex: Integers and floats can be
"divided" using the / operator, but strings cannot. The built-in type() function returns the object's type.

• An object's value represents the current state of the object. Many objects, such as numbers and strings,
cannot be modified once created. Some objects, such as lists (introduced later), are designed to be
modified.

CHECKPOINT

Identity, type, and value

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-3-variables-revisited)

CONCEPTS IN PRACTICE

id() and type()

4. Which value might be returned by id(rating)?
a. 9793344
b. <class 'float'>
c. 10.0

5. Which value might be returned by type(rating)?
a. 10.0
b. "float"
c. <class 'float'>

6. What expression returns the value of an object?
a. value(rating)
b. rating
c. "rating"

3.3 • Variables revisited 81

EXPLORING FURTHER

As shown in a memory diagram, variables and objects are two separate ideas. Calling a function like id()
or type() returns information about an object, not a variable. In fact, a variable doesn't have an identity or
a type, as shown in this example:

>>> rating = 10 # Integer object somewhere in memory.
>>> type(rating)
<class 'int'>
>>> id(rating)
9793344
>>> rating = "ten" # String object somewhere else in memory.
>>> type(rating)
<class 'str'>
>>> id(rating)
140690967388272

One might incorrectly think that the rating variable's type or identity changes. However, the only thing that
changes is which object the rating variable refers to.

TRY IT

Three variables

1. Draw a memory diagram for the following code:

a = 1
b = 2
c = b
b = a
a = c

2. Run the code on Python Tutor (https://openstax.org/r/100pythruncode) to check your answer.
3. Based on your diagram, answer these questions:

◦ What is the final value of a, b, and c?
◦ How many integer objects are created?

TRY IT

Different types

1. Draw a memory diagram for the following code:

name = "Chocolate"
length = len(name)

82 3 • Objects

Access for free at openstax.org

price = 1.99
lower = min(length, price)
product = name
name = name * 2

2. Run the code on Python Tutor (https://openstax.org/r/100pythruncode) to check your answer.
3. Based on your diagram, answer these questions:

◦ What is the type and value of each object?
◦ Which object does each variable reference?

3.4 List basics

Learning objectives
By the end of this section you should be able to

• Use indexes to access individual elements in a list.
• Use indexes to modify individual elements in a list.
• Use len() function to find the length of a list.
• Demonstrate that lists can be changed after creation.

Lists
A list object can be used to bundle elements together in Python. A list is defined by using square brackets []
with comma separated values within the square brackets. Ex: list_1 = [1, 2, 4].

Empty lists can be defined in two ways:

• list_1 = []
• list_1 = list()

Lists can be made of elements of any type. Lists can contain integers, strings, floats, or any other type. Lists
can also contain a combination of types. Ex: [2, "Hello", 2.5] is a valid list.

Python lists allow programmers to change the contents of the list in various ways.

CHECKPOINT

Lists

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/3-4-list-
basics)

CONCEPTS IN PRACTICE

Lists

1. Which is the correct way to make a list of the numbers 3, 4, and 5?
a. new_list == [3, 4, 5]
b. new_list = [3, 4, 5]
c. new_list = (3, 4, 5)

3.4 • List basics 83

2. Which of the following is not a valid way to specify a list in Python?
a. my_list = [2, 2 3, 23]
b. my_list = ["Jimmy", 2, "times"]
c. my_list = ["C", "C++", "Python", "Java", "Rust", "Scala"]

Using indexes
Individual list elements can be accessed directly using an index. Indexes begin at 0 and end at one less than
the length of the sequence. Ex: For a sequence of 50 elements, the first position is 0, and the last position is 49.

The index number is put in square brackets [] and attached to the end of the name of the list to access the
required element. Ex: new_list[3] accesses the 4th element in new_list. An expression that evaluates to an
integer number can also be used as an index. Similar to strings, negative indexing can also be used to address
individual elements. Ex: Index -1 refers to the last element and -2 the second-to-last element.

The len() function, when called on a list, returns the length of the list.

EXAMPLE 3.1

List indexes and len() function

The following code demonstrates the use of list indexes and the len() function. Line 6 shows the use of the
len() function to get the length of the list. Line 10 shows how to access an element using an index. Line 14
shows how to modify a list element using an index.

1 # Setup a list of numbers
2 num_list = [2, 3, 5, 9, 11]
3 print(num_list)
4
5 # Print the length of the list
6 print("Length: ", len(num_list))
7
8 # Print the 4th element in the list
9 # The number 3 is used to refer to the 4th element

10 print("4th element:", num_list[3])
11
12 # The desired value of the 4th element is actually 7
13 # Update the value of the 4th element to 7
14 num_list[3] = 7
15
16 # The list of the first 5 prime numbers
17 print(num_list)

The above code's output is:

[2, 3, 5, 9, 11]
Length: 5
4th element: 9

84 3 • Objects

Access for free at openstax.org

[2, 3, 5, 7, 11]

CONCEPTS IN PRACTICE

List indexes and the len() function

3. Which is the correct way to access the 17th element in a list called cardList?
a. card_list[17]
b. 16)card_list(16)
c. card_list[16]

4. What is the correct way to modify the element "Tom" to "Tim" in the following list?

name_list = ["Carla", "Monique", "Westin", "Tom"]

a. name_list[-1] = "Tim"
b. name_list[4] = "Tim"
c. name_list[end] = "Tim"

TRY IT

List basics

Write a program to complete the following:

1. Create a list with the following elements: 2, 23, 39, 6, -5.
2. Change the third element of the list (index 2) to 35.
3. Print the resulting list and the list's length.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/3-4-list-
basics)

3.5 Tuple basics

Learning objectives
By the end of this section you should be able to

• Describe the features and benefits of a tuple.
• Develop a program that creates and uses a tuple successfully.
• Identify and discuss the mutability of a tuple.

Creating tuples and accessing elements
A tuple is a sequence of comma separated values that can contain elements of different types. A tuple must
be created with commas between values, and conventionally the sequence is surrounded by parentheses.

3.5 • Tuple basics 85

Each element is accessed by index, starting with the first element at index 0.

tuple_1 = (2, 3, 4)
print(f'tuple_1: {tuple_1}')
print(tuple_1[1])
print()
data_13 = ('Aimee Perry', 96, [94, 100,
97, 93])
print(f'data_13: {data_13}')
print(data_13[2])

tuple_1: (2, 3, 4)
3

data_13: ('Aimee Perry', 96, [94, 100,
97, 93])
[94, 100, 97, 93]

Table 3.4 Example tuples.

CONCEPTS IN PRACTICE

Creating tuples and accessing elements

1. Consider the example above. Which accesses tuple_1's first element?
a. tuple_1[0]
b. tuple_1[1]
c. tuple_1[2]

2. Which creates a valid tuple?
a. tuple_2 = (42, 26, 13)
b. tuple_3 = (42, 26, 13.5)
c. both

3. Which creates a tuple with three elements?
a. my_tuple = 'a', 'b', 'c'
b. my_tuple = ['a', 'b', 'c']
c. my_tuple = ('a', 'b', 'c')

Tuple properties
How do tuples compare to lists? Tuples are ordered and allow duplicates, like lists, but have different
mutability. An immutable object cannot be modified after creation. A mutable object can be modified after
creation. Tuples are immutable, whereas lists are mutable.

CHECKPOINT

Mutability of a tuple vs. a list

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-5-tuple-basics)

86 3 • Objects

Access for free at openstax.org

CONCEPTS IN PRACTICE

Using tuples

4. Consider the final program in the example above. What is the value of my_tuple?
a. (0.693, 0.414, 3.142)
b. (0.693, 1.414, 3.142)
c. Error

5. Why does the following code produce an error?

tuple_1 = ('alpha', 'bravo', 'charlie')
tuple_1.append('charlie')

a. Append isn't allowed.
b. Duplicates aren't allowed.
c. Strings aren't allowed

6. A programmer wants to create a sequence of constants for easy reference that can't be changed
anywhere in the program. Which sequence would be the most appropriate?
a. list
b. tuple

MUTABILITY AND PERFORMANCE

Tuples are immutable and have a fixed size, so tuples use less memory. Overall, tuples are faster to create
and access, resulting in better performance that can be noticeable with large amounts of data.

TRY IT

Creating a tuple from a list

Suppose a programmer wants to create a tuple from a list to prevent future changes. The tuple()
function creates a tuple from an object like a list. Ex: my_tuple = tuple(my_list) creates a tuple from
the list my_list. Update the program below to create a tuple final_grades from the list grades.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-5-tuple-basics)

TRY IT

Creating a tuple with user input

Write a program that reads in two strings and two integers from input and creates a tuple, my_data, with
the four values.

Given input:

3.5 • Tuple basics 87

x
y
15
20

The output is:

my_data: ('x', 'y', 15, 20)

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-5-tuple-basics)

3.6 Chapter summary

Highlights from this chapter include:

• A string is a sequence of values that represents Unicode code points.
• An index refers to the position of a value in a sequence (string, list, tuple).
• Positive indexes range from 0 to length–1. Negative indexes range from –1 to –length.
• F-strings are a convenient way to print multiple outputs and format integers and floats.
• Variables refer to objects. Memory diagrams are useful for drawing variables and objects.
• A list object can be used to refer to multiple objects, by index, using the same variable.
• A tuple is similar to a list, but uses parentheses and cannot be changed once created.

Code Description

ord(c) Gets an integer representing the Unicode code point of a character.

chr(i) Converts a Unicode code point (integer) into a One-character string.

'\n' Escape sequence for the newline character.

'\t' Escape sequence for the tab character.

f"{number:.02d}" Creates a string by formatting an integer to be at least two digits.

Table 3.5 Chapter 3 reference.

88 3 • Objects

Access for free at openstax.org

Code Description

f"{number:.2f}" Creates a string by formatting a float to have two decimal places.

id(object) Gets the identity (memory location) of an object.

type(object) Gets the type (class name) of an object.

my_list = ["a", "b", "c"] Creates a list of three strings.

my_tuple = ("a", "b", "c") Creates a tuple of three strings.

my_list[0] Gets the first element ("a") of my_tuple.

my_tuple[-1] Gets the last element ("c") of my_tuple.

Table 3.5 Chapter 3 reference.

3.6 • Chapter summary 89

90 3 • Objects

Access for free at openstax.org

Figure 4.1 credit: modification of work "Fork In The Road", by Ian Sane/Flickr, CC BY 2.0

Chapter Outline
4.1 Boolean values
4.2 If-else statements
4.3 Boolean operations
4.4 Operator precedence
4.5 Chained decisions
4.6 Nested decisions
4.7 Conditional expressions
4.8 Chapter summary

Introduction
The Python interpreter follows a single path of execution when executing a program. What if a programmer
wants to define multiple possible paths? Ex: Instead of always taking the left path, a program uses the path
width to decide which path to take. If the left path is wider, take the right path. Else, take the left path.

A branch is a group of statements that execute based on a condition. The Expressions chapter introduced
expressions. This chapter explores how expressions can be used as conditions to make decisions in programs.

4.1 Boolean values

Learning objectives
By the end of this section you should be able to

• Explain a Boolean value.
• Use bool variables to store Boolean values.
• Demonstrate converting integers, floats, and strings to Booleans.
• Demonstrate converting Booleans to integers, floats, and strings.
• Use comparison operators to compare integers, floats, and strings.

Decisions
4

bool data type
People often ask binary questions such as yes/no or true/false questions. Ex: Do you like pineapple on pizza?
Ex: True or false: I like pineapple on pizza. The response is a Boolean value, meaning the value is either true or
false. The bool data type, standing for Boolean, represents a binary value of either true or false. true and
false are keywords, and capitalization is required.

CHECKPOINT

Example: Crosswalk sign

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-1-boolean-values)

CONCEPTS IN PRACTICE

Using Boolean variables

Consider the following code:

is_fruit = "True"
is_vegetable = 0
is_dessert = False

1. What is the data type of is_fruit?
a. Boolean
b. integer
c. string

2. What is the data type of is_vegetable?
a. Boolean
b. integer
c. string

3. What is the data type of is_dessert?
a. Boolean
b. integer
c. string

4. How many values can a Boolean variable represent?
a. 2
b. 4
c. 8

5. Which is a valid value for a Boolean variable?
a. true
b. True
c. 1

92 4 • Decisions

Access for free at openstax.org

6. Suppose the following is added to the code above:

is_dessert = 0
print(type(is_dessert))

What is the output?
a. <class 'bool'>
b. <class 'int'>
c. Error

Type conversion with bool()
Deciding whether a value is true or false is helpful when writing programs/statements based on decisions.
Converting data types to Booleans can seem unintuitive at first. Ex: Is "ice cream" True? But the
conversion is actually simple.

bool() converts a value to a Boolean value, True or False.

• True: any non-zero number, any non-empty string
• False: 0, empty string

CHECKPOINT

Converting integers, floats, and strings using bool()

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-1-boolean-values)

CONCEPTS IN PRACTICE

Converting numeric types and strings to Booleans

7. bool(0.000)
a. True
b. False

8. bool(-1)
a. True
b. False

9. bool("")
a. True
b. False

10. bool("0")
a. True
b. False

11. Given input False, what is bool(input())?

4.1 • Boolean values 93

a. True
b. False

CONCEPTS IN PRACTICE

Converting Booleans to numeric types and strings

Given is_on = True, what is the value of each expression?

12. float(is_on)
a. 0.0
b. 1.0

13. str(is_on)
a. "is_on"
b. "True"

14. int(is_on)
a. 0
b. 1

Comparison operators
Programmers often have to answer questions like "Is the current user the admin?" A programmer may want to
compare a string variable, user, to the string, "admin". Comparison operators are used to compare values,
and the result is either true or false. Ex: is_admin = (user == "admin"). user is compared with "admin"
using the == operator, which tests for equality. The Boolean variable, is_admin, is assigned with the Boolean
result.

The 6 comparison operators:

• equal to: ==
• not equal to: !=
• greater than: >
• less than: <
• greater than or equal to: >=
• less than or equal to: <=

CHECKPOINT

Example: Rolling a d20 in a tabletop game

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-1-boolean-values)

94 4 • Decisions

Access for free at openstax.org

CONCEPTS IN PRACTICE

Comparing values

For each new variable, what is the value of compare_result?

15. x = 14
compare_result = (x <= 13)

a. True
b. False

16. w = 0
compare_result = (w != 0.4)

a. True
b. False

17. v = 4
compare_result = (v < 4.0)

a. True
b. False

18. y = 2
compare_result = (y > "ab")

a. True
b. False
c. Error

19. z = "cilantro"
compare_result = (z == "coriander")

a. True
b. False

20. a = "dog"
compare_result = (a < "cat")

a. True
b. False

4.1 • Boolean values 95

= VS ==

A common mistake is using = for comparison instead of ==. Ex: is_zero = num=0 will always assign
is_zero and num with 0, regardless of num's original value. The = operator performs assignment and will
modify the variable. The == operator performs comparison, does not modify the variable, and produces
True or False.

EXPLORING FURTHER

• Unicode Basic Latin Chart (https://openstax.org/r/100unicodelatin)

TRY IT

Friday Boolean

"It's Friday, I'm in love" —from "Friday I'm in Love," a song released by the Cure in 1992.

Write a program that reads in the day of the week. Assign the Boolean variable, in_love, with the result of
whether the day is Friday or not.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-1-boolean-values)

TRY IT

Even numbers

Write a program that reads in an integer and prints whether the integer is even or not. Remember, a
number is even if the number is divisible by 2. To test this use number % 2 == 0. Ex: If the input is 6, the
output is "6 is even: True".

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-1-boolean-values)

4.2 If-else statements

Learning objectives
By the end of this section you should be able to

• Identify which operations are performed when a program with if and if-else statements is run.
• Identify the components of an if and if-else statement and the necessary formatting.
• Create an if-else statement to perform an operation when a condition is true and another operation

otherwise.

if statement
If the weather is rainy, grab an umbrella! People make decisions based on conditions like if the weather is
rainy, and programs perform operations based on conditions like a variable's value. Ex: A program adds two

96 4 • Decisions

Access for free at openstax.org

numbers. If the result is negative, the program prints an error.

A condition is an expression that evaluates to true or false. An if statement is a decision-making structure
that contains a condition and a body of statements. If the condition is true, the body is executed. If the
condition is false, the body is not executed.

The if statement's body must be grouped together and have one level of indentation. The PEP 8 style guide
recommends four spaces per indentation level. The Python interpreter will produce an error if the body is
empty.

CHECKPOINT

Example: Quantity check

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/4-2-if-
else-statements)

USING BOOLEAN VARIABLES

A Boolean variable already has a value of True or False and can be used directly in a condition rather than
using the equality operator. Ex: if is_raining == True: can be simplified to if is_raining:.

CONCEPTS IN PRACTICE

Using if statements

1. Given the following, which part is the condition?

if age < 12:
print("Discount for children available")

a. age
b. age < 12
c. print("Discount for children available")

2. Given the following, which lines execute if the condition is true?

1 print("Have a great day.")
2 if is_raining:
3 print("Don't forget an umbrella!")
4 print("See you soon.")

a. 1, 2, 3
b. 1, 2, 4
c. 1, 2, 3, 4

3. Given the following (same as above), which lines execute if the condition is False?

1 print("Have a great day.")

4.2 • If-else statements 97

2 if is_raining:
3 print("Don't forget an umbrella!")
4 print("See you soon.")

a. 1, 2, 3
b. 1, 2, 4
c. 1, 2, 3, 4

4. Given num = -10, what is the final value of num?

if num < 0:
num = 25

if num < 100:
num = num + 50

a. -10
b. 40
c. 75

5. Given input 10, what is the final value of positive_num?

positive_num = int(input("Enter a positive number:"))
if positive_num < 0:

print("Negative input set to 0")
positive_num = 0

a. 10
b. 0
c. Error

if-else statement
An if statement defines actions to be performed when a condition is true. What if an action needs to be
performed only when the condition is false? Ex: If the restaurant is less than a mile away, we'll walk. Else, we'll
drive.

An else statement is used with an if statement and contains a body of statements that is executed when the
if statement's condition is false. When an if-else statement is executed, one and only one of the branches
is taken. That is, the body of the if or the body of the else is executed. Note: The else statement is at the
same level of indentation as the if statement, and the body is indented.

if-else statement template:

1 # Statements before
2
3 if condition:
4 # Body
5 else:
6 # Body
7

98 4 • Decisions

Access for free at openstax.org

8 # Statements after

CHECKPOINT

Example: Trivia question

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/4-2-if-
else-statements)

CONCEPTS IN PRACTICE

Exploring if-else statements

6. Given the following code, the else branch is taken for which range of x?

if x >= 15:
Do something

else:
Do something else

a. x >= 15
b. x <= 15
c. x < 15

7. Given x = 40, what is the final value of y?

if x > 30:
y = x - 10

else:
y = x + 10

a. 30
b. 40
c. 50

8. Given y = 50, which is not a possible final value of y?

if x < 50:
y = y / 2

else:
y = y * 2

y = y + 5

a. 30
b. 55
c. 105

4.2 • If-else statements 99

TRY IT

Improved division

The following program divides two integers. Division by 0 produces an error. Modify the program to read in
a new denominator (with no prompt) if the denominator is 0.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/4-2-if-
else-statements)

TRY IT

Converting temperature units

The following program reads in a temperature as a float and the unit as a string: "f" for Fahrenheit or "c"
for Celsius.

Calculate new_temp, the result of converting temp from Fahrenheit to Celsius or Celsius to Fahrenheit
based on unit. Calculate new_unit: "c" if unit is "f" and "f" if unit is "c".

Conversion formulas:

• Degrees Celsius = (degrees Fahrenheit - 32) * 5/9
• Degrees Fahrenheit = (degrees Celsius * 5/9) + 32

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/4-2-if-
else-statements)

4.3 Boolean operations

Learning objectives
By the end of this section you should be able to

• Explain the purpose of logical operators.
• Describe the truth tables for and, or, and not.
• Create expressions with logical operators.
• Interpret if-else statements with conditions using logical operators.

Logical operator: and
Decisions are often based on multiple conditions. Ex: A program printing if a business is open may check that
hour >= 9 and hour < 17. A logical operator takes condition operand(s) and produces True or False.

Python has three logical operators: and, or, and not. The and operator takes two condition operands and
returns True if both conditions are true.

100 4 • Decisions

Access for free at openstax.org

p q p and q

True True True

True False False

False True False

False False False

Table 4.1 Truth table: p and q.

CHECKPOINT

Example: Museum entry

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-3-boolean-operations)

CONCEPTS IN PRACTICE

Using the and operator

1. Consider the example above. Jaden tries to enter when the capacity is 2500 and there are 2 hours
before close. Can Jaden enter?
a. yes
b. no

2. Consider the example above. Darcy tries to enter when the capacity is 3000. For what values of
hrs_to_close will Darcy to be able to enter?
a. hrs_to close > 1.0
b. no such value

3. Given is_admin = False and is_online = True, what is the value of is_admin and is_online?
a. True
b. False

4. Given x = 8 and y = 21, what is the final value of z?

if (x < 10) and (y > 20):
z = 5

else:
z = 0

a. 0
b. 5

4.3 • Boolean operations 101

Logical operator: or
Sometimes a decision only requires one condition to be true. Ex: If a student is in the band or choir, they will
perform in the spring concert. The or operator takes two condition operands and returns True if either
condition is true.

p q p or q

True True True

True False True

False True True

False False False

Table 4.2 Truth table: p or q.

CHECKPOINT

Example: Streaming prompt

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-3-boolean-operations)

CONCEPTS IN PRACTICE

Using the or operator

5. Given days = 21 and is_damaged is False, is the refund processed?

if (days < 30) or is_damaged:
Process refund

a. yes
b. no

6. For what values of age is there no discount?

if (age < 12) or (age > 65):
Apply student/senior discount

a. age >= 12
b. age <= 65
c. (age >= 12) and (age <= 65)

7. Given a = 9 and b = 10, does the test pass?

if (a%2 == 0 and b%2 == 1) or (a%2 == 1 and b%2 == 0):

102 4 • Decisions

Access for free at openstax.org

Test passed
else:

Test failed

a. yes
b. no

Logical operator: not
If the computer is not on, press the power button. The not operator takes one condition operand and returns
True when the operand is false and returns False when the operand is true.

not is a useful operator that can make a condition more readable and can be used to toggle a Boolean's value.
Ex: is_on = not is_on.

p not p

True False

False True

Table 4.3 Truth table:
not p.

CHECKPOINT

Example: Diving warning

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-3-boolean-operations)

CONCEPTS IN PRACTICE

Using the not operator

8. Given x = 13, what is the value of not(x < 10)?
a. True
b. False

9. Given x = 18, is x in the correct range?

if not(x > 15 and x < 20):
x in correct range

a. yes
b. no

10. Given is_turn = False and timer = 65, what is the final value of is_turn?

4.3 • Boolean operations 103

if timer > 60:
is_turn = not is_turn

a. True
b. False

TRY IT

Speed limits

Write a program that reads in a car's speed as an integer and checks if the car's speed is within the freeway
limits. A car's speed must be at least 45 mph but no greater than 70 mph on the freeway.

If the speed is within the limits, print "Good driving". Else, print "Follow the speed limits".

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-3-boolean-operations)

4.4 Operator precedence

Learning objectives
By the end of this section you should be able to

• Describe how precedence impacts order of operations.
• Describe how associativity impacts order of operations.
• Explain the purpose of using parentheses in expressions with multiple operators.

Precedence
When an expression has multiple operators, which operator is evaluated first? Precedence rules provide the
priority level of operators. Operators with the highest precedence execute first. Ex: 1 + 2 * 3 is 7 because
multiplication takes precedence over addition. However, (1 + 2) * 3 is 9 because parentheses take
precedence over multiplication.

Operator Meaning

() Parentheses

** Exponentiation (right associative)

*, /, //, % Multiplication, division, floor division, modulo

+, - Addition, subtraction

<, <=, >, >=, ==, != Comparison operators

Table 4.4 Operator precedence from highest to lowest.

104 4 • Decisions

Access for free at openstax.org

Operator Meaning

not Logical not operator

and Logical and operator

or Logical or operator

Table 4.4 Operator precedence from highest to lowest.

CHECKPOINT

Operator precedence

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-4-operator-precedence)

CONCEPTS IN PRACTICE

Precedence rules

Which part of each expression is evaluated first?

1. x ** 2 + 6 / 3
a. 6 / 3
b. x ** 2
c. 2 + 6

2. not 3 * 5 > 10
a. 3 * 5
b. not 3
c. 5 > 10

3. z == 5 and x / 8 < 100
a. 5 and x
b. x / 8
c. 8 < 100

Associativity
What if operators beside each other have the same level of precedence? Associativity determines the order of
operations when precedence is the same. Ex: 8 / 4 * 3 is evaluated as (8/4) * 3 rather than 8 / (4*3)
because multiplication and division are left associative. Most operators are left associative and are evaluated
from left to right. Exponentiation is the main exception (noted above) and is right associative: that is, evaluated
from right to left. Ex: 2 ** 3 ** 4 is evaluated as 2 ** (3**4).

When comparison operators are chained, the expression is converted into the equivalent combination of

4.4 • Operator precedence 105

comparisons and evaluated from left to right. Ex. 10 < x <= 20 is evaluated as 10 < x and x <= 20.

CHECKPOINT

Operation precedence

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-4-operator-precedence)

CONCEPTS IN PRACTICE

Associativity

How is each expression evaluated?

4. 10 + 3 * 2 / 4
a. 10 + (3 * (2 / 4))
b. 10 + ((3 * 2) / 4)
c. (10 + 3) * (2 / 4)

5. 2 * 2 ** 2 ** 3
a. 2 * ((2 ** 2) ** 3)
b. 2 * (2 ** (2 ** 3))
c. ((2*2) ** 2) ** 3

6. 100 < x > 150
a. 100 < x and x < 150
b. 100 < x or x > 150
c. 100 < x and x > 150

Enforcing order and clarity with parentheses
Operator precedence rules can be hard to remember. Parentheses not only assert a different order of
operations but also reduce confusion.

CHECKPOINT

Using parentheses

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-4-operator-precedence)

CONCEPTS IN PRACTICE

Using parentheses

7. Consider the example above. Why was the evaluation order different from what the programmer
wanted?
a. Equality has precedence over and.

106 4 • Decisions

Access for free at openstax.org

b. All operators are evaluated right to left.
c. Order is random when parentheses aren't used.

8. Given x = 8 and y = 9, what is the result of the following?
x + 3 * y - 5
a. 30
b. 44
c. 94

9. Given x = 8 and y = 9, what is the result of the following?
(x+3) * (y-5)
a. 30
b. 44
c. 94

PEP 8 RECOMMENDATIONS: SPACING AROUND OPERATORS

The PEP 8 style guide recommends consistent spacing around operators to avoid extraneous and confusing
whitespace.

• Avoid multiple spaces and an unequal amount of whitespace around operators with two operands.
Avoid: x= y * 44
Better: x = y * 44

• Avoid spaces immediately inside parentheses.
Avoid: x = (4 * y)
Better: x = (4 * y)

• Surround the following operators with one space: assignment, augment assignment, comparison,
Boolean.
Avoid: x= y<44
Better: x = y < 44

• Consider adding whitespace around operators with lower priority.
Avoid: x = 5 * z+20
Better: x = 5*z + 20

4.5 Chained decisions

Learning objectives
By the end of this section you should be able to

• Identify the branches taken in an if-elif and if-elif-else statement.
• Create a chained decision statement to evaluate multiple conditions.

elif
Sometimes, a complicated decision is based on more than a single condition. Ex: A travel planning site reviews
the layovers on an itinerary. If a layover is greater than 24 hours, the site should suggest accommodations.
Else if the layover is less than one hour, the site should alert for a possible missed connection.

4.5 • Chained decisions 107

Two separate if statements do not guarantee that only one branch is taken and might result in both branches
being taken. Ex: The program below attempts to add a curve based on the input test score. If the input is 60,
both if statements are incorrectly executed, and the resulting score is 75.

score = int(input())
if score < 70:

score += 10
Wrong:
if 70 <= score < 85:

score += 5

Chaining decision statements with elif allows the programmer to check for multiple conditions. An elif (short
for else if) statement checks a condition when the prior decision statement's condition is false. An elif
statement is part of a chain and must follow an if (or elif) statement.

if-elif statement template:

Statements before

if condition:
Body

elif condition:
Body

Statements after

CHECKPOINT

Example: Livestream features

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-5-chained-decisions)

CONCEPTS IN PRACTICE

Using elif

1. Fill in the blank to execute Body 2 when condition_1 is false and condition_2 is true.

if condition_1:
Body 1

__ condition_2:
Body 2

a. if
b. elif

108 4 • Decisions

Access for free at openstax.org

c. else

2. Given x = 42 and y = 0, what is the final value of y?

if x > 44:
y += 2

elif x < 50:
y += 5

a. 2
b. 5
c. 7

3. Which conditions complete the code such that if x is less than 0, Body 1 executes, else if x equals 0,
Body 2 executes.

if _________:
Body 1

elif _________:
Body 2

a. x < 0
x == 0

b. x == 0
x < 0

c. x <= 0
[no condition]

4. Which of the following is a valid chained decision statement?
a. if condition_1:

Body 1
elif condition_2:

Body 2
b. if condition_1:

Body 1
elif condition_2:

Body 2
c. elif condition_1:

Body 1
if condition_2:

Body 2

5. Given attendees = 350, what is the final value of rooms?

rooms = 1
if attendees >= 100:

rooms += 3
if attendees <= 200:

rooms += 7

4.5 • Chained decisions 109

elif attendees <= 400:
rooms += 14

a. 4
b. 15
c. 18

if-elif-else statements
Elifs can be chained with an if-else statement to create a more complex decision statement. Ex: A program
shows possible chess moves depending on the piece type. If the piece is a pawn, show moving forward one (or
two) places. Else if the piece is a bishop, show diagonal moves. Else if . . . (finish for the rest of the pieces).

CHECKPOINT

Example: Possible chess moves

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-5-chained-decisions)

CONCEPTS IN PRACTICE

Using elif within if-elif-else statements

6. Given hour = 12, what is printed?

if hour < 8:
print("Too early")

elif hour < 12:
print("Good morning")

elif hour < 13:
print("Lunchtime")

elif hour < 17:
print("Good afternoon")

else:
print("Too late")

a. Good morning
b. Lunchtime
c. Good afternoon
d. Too late

7. Where can an elif statement be added?

1
if condition:

Body

110 4 • Decisions

Access for free at openstax.org

2
elif condition:

Body
3
else:

Body
4

a. 1
b. 2
c. 3
d. 4

8. Given x = -1 and y = -2, what is the final value of y?

if x < 0 and y < 0:
y = 10

elif x < 0 and y > 0:
y = 20

else:
y = 30

a. 10
b. 20
c. 30

9. How could the following statements be rewritten as a chained statement?

if price < 9.99:
order = 50

if 9.99 <= price < 19.99:
order = 30

if price >= 19.99:
order = 10

a. if price < 9.99:
order = 50

else:
order = 30

order = 10
b. if price < 9.99:

order = 50
elif price < 19.99:

order = 30
elif price == 19.99:

order = 10
c. if price < 9.99:

order = 50

4.5 • Chained decisions 111

elif price < 19.99:
order = 30

else:
order = 10

TRY IT

Crochet hook size conversion

Write a program that reads in a crochet hook's US size and computes the metric diameter in millimeters. (A
subset of sizes is used.) If the input does not match B-G, the diameter should be assigned with -1.0. Ex: If
the input is D, the output is "3.25 mm".

Size conversions for US size: mm

• B : 2.25
• C : 2.75
• D : 3.25
• E : 3.5
• F : 3.75
• G : 4.0

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-5-chained-decisions)

TRY IT

Color wavelengths

Write a program that reads in an integer representing a visible light wavelength in nanometers. Print the
corresponding color using the following inclusive ranges:

• Violet: 380–449
• Blue: 450–484
• Cyan: 485–499
• Green: 500–564
• Yellow: 565–589
• Orange: 590–624
• Red: 625–750

Assume the input is within the visible light spectrum, 380-750 inclusive.

Given input:

550

The output is:

112 4 • Decisions

Access for free at openstax.org

Green

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-5-chained-decisions)

4.6 Nested decisions

Learning objectives
By the end of this section you should be able to

• Describe the execution paths of programs with nested if-else statements.
• Implement a program with nested if-else statements.

Nested decision statements
Suppose a programmer is writing a program that reads in a game ID and player count and prints whether the
user has the right number of players for the game.

The programmer may start with:

if game == 1 and players < 2:
print("Not enough players")

if game == 1 and players > 4:
print("Too many players")

if game == 1 and (2 <= players <= 4):
print("Ready to start")

if game == 2 and players < 3:
print("Not enough players")

if game == 2 and players > 6:
print("Too many players")

if game == 2 and (3 <= players <= 6):
print("Ready to start")

The programmer realizes the code is redundant. What if the programmer could decide the game ID first and
then make a decision about players? Nesting allows a decision statement to be inside another decision
statement, and is indicated by an indentation level.

An improved program:

if game == 1:
if players < 2:

print("Not enough players")
elif players > 4:

print("Too many players")
else:

print("Ready to start")
if game == 2:

4.6 • Nested decisions 113

if players < 3:
print("Not enough players")

elif players > 6:
print("Too many players")

else:
print("Ready to start")

Test game IDs 3-end

CHECKPOINT

Example: Poisonous plant identification

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-6-nested-decisions)

CONCEPTS IN PRACTICE

Using nested if-else statements

1. Consider the example above. Given leaf_count = 9 and leaf_shape = "teardrop", what is the
output?
a. Might be poison ivy
b. Might be poison oak
c. Might be poison sumac

2. Given num_dancers = 49, what is printed?

if num_dancers < 0:
print("Error: num_dancers is negative")

else:
if num_dancers % 2 == 1:

print("Error: num_dancers is odd")
print(num_dancers, "dancers")

a. Error: num_dancers is odd
b. 49 dancers
c. Error: num_dancers is odd

49 dancers

3. Given x = 256, y = 513, and max = 512, which of the following will execute?

if x == y:
Body 1

elif x < y:
Body 2
if y >= max:

Body 3
else:

114 4 • Decisions

Access for free at openstax.org

Body 4
else:

Body 5

a. Body 2
b. Body 2, Body 3
c. Body 2, Body 5

4. Given x =118, y = 300, and max = 512, which of the following will execute?

if x == y:
Body 1

elif x < y:
Body 2
if y >= max:

Body 3
else:

Body 4
else:

Body 5

a. Body 2
b. Body 3
c. Error

TRY IT

Meal orders

Write a program that reads in a string, "lunch" or "dinner", representing the menu choice, and an
integer, 1, 2, or 3, representing the user's meal choice. The program then prints the user's meal choice.

Lunch Meal Options

• 1: Caesar salad
• 2: Spicy chicken wrap
• 3: Butternut squash soup

Dinner Meal Options

• 1: Baked salmon
• 2: Turkey burger
• 3: Mushroom risotto

Ex: If the input is:
lunch
3

The output is:
Your order: Butternut squash soup

4.6 • Nested decisions 115

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-6-nested-decisions)

4.7 Conditional expressions

Learning objectives
By the end of this section you should be able to

• Identify the components of a conditional expression.
• Create a conditional expression.

Conditional expressions
A conditional expression (also known as a "ternary operator") is a simplified, single-line version of an
if-else statement.

Conditional expression template:

expression_if_true if condition else expression_if_false

A conditional expression is evaluated by first checking the condition. If condition is true,
expression_if_true is evaluated, and the result is the resulting value of the conditional expression. Else,
expression_if_false is evaluated, and the result is the resulting value of the conditional expression.

A variable can be assigned with a conditional expression. Ex: Finding the max of two numbers can be
calculated with max_num = y if x < y else x

Note: Conditional expressions have the lowest precedence of all Python operations.

CHECKPOINT

Example: Version check

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-7-conditional-expressions)

CONCEPTS IN PRACTICE

Using conditional expressions

1. What is the conditional expression version of the following if-else statement?

if x%2 == 0:
response = 'even'

else:
response = 'odd'

a. response = if x%2 == 0 "even" else "odd"
b. response = "odd" if x%2 == 0 else "even"

116 4 • Decisions

Access for free at openstax.org

c. response = "even" if x%2 == 0 else "odd"

2. Given x = 100 and offset = 10, what is the value of result?

result = x + offset if x < 100 else x - offset

a. 90
b. 100
c. 110

3. Which part of the conditional expression is incorrect?

min_num = x if x < y else min_num = y

a. min_num = x
b. x < y
c. min_num = y

4. Which of the following is an improved version of the following if-else statement?

if x < 50:
result = True

else:
result = False

a. result = True if x < 50 else False
b. result = x < 50

5. What are the possible values of total?

total = fee + 10 if hours > 12 else 2

a. 10, 2
b. fee + 10, 2
c. fee + 10, fee + 2

TRY IT

Ping values

Write a program that reads in an integer, ping, and prints ping_report, a string indicating whether the
ping is low to average or too high. ping values under 150 have a ping_report of "low to average".
ping values of 150 and higher have a ping_report of "too high". Use a conditional expression to assign
ping_report.

Ex: If the input is 30, the output is "Ping is low to average".

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-7-conditional-expressions)

4.7 • Conditional expressions 117

4.8 Chapter summary

Highlights from this chapter include:

• Booleans represent a value of True or False.
• Comparison operators compare values and produce True or False.
• Logical operators take condition operand(s) and produce True or False.
• Operators are evaluated in order according to precedence and associativity.
• Conditions are expressions that evaluate to True or False.
• Decision statements allow different paths of execution (branches) through code based on conditions.
• Decision statements can be nested inside other decision statements.
• Conditional expressions are single-line versions of if-else statements.

At this point, you should be able to write programs that evaluate conditions and execute code statements
accordingly with the correct order of operations. The programming practice below ties together most topics
presented in the chapter.

Function Description

bool(x) Converts x to a Boolean value, either True or False.

Operator Description

x == y
(Equality)

Compares the values of x and y and returns True if the values are equal and False
otherwise. Ex: 10 == 10 is True.

x != y
(Inequality)

Compares the values of x and y and returns True if the values are inequal and False
otherwise. Ex: 7 != 4 is True.

x > y
(Greater than)

Compares the values of x and y and returns True if the x is greater than y and False
otherwise. Ex: 9 > 3 is True.

x < y
(Less than)

Compares the values of x and y and returns True if the x is less than y and False
otherwise. Ex: 9 < 8 is False.

x >= y
(Greater than
or equal)

Compares the values of x and y and returns True if the x is greater than or equal to y
and False otherwise. Ex: 2 >= 2 is True.

x <= y
(Less than or
equal)

Compares the values of x and y and returns True if the x is less than or equal to y and
False otherwise. Ex: 8 <= 7 is False.

Table 4.5 Chapter 4 reference.

118 4 • Decisions

Access for free at openstax.org

Function Description

x and y
(Logical)

Evaluates the Boolean values of x and y and returns True if both are true. Ex: True and
False is False.

x or y
(Logical)

Evaluates the Boolean values of x and y and returns True if either is true. Ex: True or
False is True.

not x
(Logical)

Evaluates the Boolean value of x and returns True if the value is false and False if the
value is true. Ex: not True is False.

Decision
statement

Description

if statement

Statements before

if condition:
Body

Statements after

else statement

Statements before

if condition:
Body

else:
Body

Statements after

Table 4.5 Chapter 4 reference.

4.8 • Chapter summary 119

Function Description

elif statement

Statements before

if condition:
Body

elif condition:
Body

else:
Body

Statements after

Nested if
statement

Statements before

if condition:
if condition:

Body
else:

Body
else:

if condition:
Body

else:
Body

Statements after

Conditional
expression

expression_if_true if condition else expression_if_false

Table 4.5 Chapter 4 reference.

120 4 • Decisions

Access for free at openstax.org

Figure 5.1 credit: modification of work "Quantum Computing", by Kevin Dooley/Flickr, CC BY 2.0

Chapter Outline
5.1 While loop
5.2 For loop
5.3 Nested loops
5.4 Break and continue
5.5 Loop else
5.6 Chapter summary

Introduction
A loop is a code block that runs a set of statements while a given condition is true. A loop is often used for
performing a repeating task. Ex: The software on a phone repeatedly checks to see if the phone is idle. Once
the time set by a user is reached, the phone is locked. Loops can also be used for iterating over lists like
student names in a roster, and printing the names one at a time.

In this chapter, two types of loops, for loop and while loop, are introduced. This chapter also introduces
break and continue statements for controlling a loop's execution.

5.1 While loop

Learning objectives
By the end of this section you should be able to

• Explain the loop construct in Python.
• Use a while loop to implement repeating tasks.

While loop
A while loop is a code construct that runs a set of statements, known as the loop body, while a given
condition, known as the loop expression, is true. At each iteration, once the loop statement is executed, the

Loops
5

loop expression is evaluated again.

• If true, the loop body will execute at least one more time (also called looping or iterating one more time).
• If false, the loop's execution will terminate and the next statement after the loop body will execute.

CHECKPOINT

While loop

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-1-while-loop)

CONCEPTS IN PRACTICE

While loop example

Fibonacci is a series of numbers in which each number is the sum of the two preceding numbers. The
Fibonacci sequence starts with two ones: 1, 1, 2, 3, Consider the following code that prints all Fibonacci
numbers less than 20, and answer the following questions.

Initializing the first two Fibonacci numbers
f = 1
g = 1
print (f, end = ' ')

Running the loop while the last Fibonacci number is less than 20
while g < 20:

print(g, end = ' ')
Calculating the next Fibonacci number and updating the last two sequence

numbers
temp = f
f = g
g = temp + g

1. How many times does the loop execute?
a. 5
b. 6
c. 7

2. What is the variable g's value when the while loop condition evaluates to False?
a. 13
b. 20
c. 21

3. What are the printed values in the output?
a. 1 1 2 3 5 8 13
b. 1 2 3 5 8 13
c. 1 1 2 3 5 8 13 21

122 5 • Loops

Access for free at openstax.org

Counting with a while loop
A while loop can be used to count up or down. A counter variable can be used in the loop expression to
determine the number of iterations executed. Ex: A programmer may want to print all even numbers between
1 and 20. The task can be done by using a counter initialized with 1. In each iteration, the counter's value is
increased by one, and a condition can check whether the counter's value is an even number or not. The
change in the counter's value in each iteration is called the step size. The step size can be any positive or
negative value. If the step size is a positive number, the counter counts in ascending order, and if the step size
is a negative number, the counter counts in descending order.

EXAMPLE 5.1

A program printing all odd numbers between 1 and 10

Initialization
counter = 1

While loop condition
while counter <= 10:

if counter % 2 == 1:
print(counter)

Counting up and increasing counter's value by 1 in each iteration
counter += 1

CHECKPOINT

Counting with while loop

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-1-while-loop)

CONCEPTS IN PRACTICE

while loop counting examples

Given the code, answer the following questions.

n = 4
while n > 0:

print(n)
n = n - 1

print("value of n after the loop is", n)

5.1 • While loop 123

4. How many times does the loop execute?
a. 3
b. 4
c. 5

5. Which line is printed as the last line of output?
a. value of n after the loop is -1.
b. value of n after the loop is 0.
c. value of n after the loop is 1.

6. What happens if the code is changed as follows?

n = 4
while n > 0:

print(n)
Modified line
n = n + 1

print("value of n after the loop is", n)

a. The code will not run.
b. The code will run for one additional iteration.
c. The code will never terminate.

TRY IT

Reading inputs in a while loop

Write a program that takes user inputs in a while loop until the user enters "begin". Test the code with
the given input values to check that the loop does not terminate until the input is "begin". Once the input
"begin" is received, print "The while loop condition has been met.".

Enter different input words to see when the while loop condition is met.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-1-while-loop)

TRY IT

Sum of odd numbers

Write a program that reads two integer values, n1 and n2. Use a while loop to calculate the sum of odd
numbers between n1 and n2 (inclusive of n1 and n2). Remember, a number is odd if number % 2 != 0.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-1-while-loop)

124 5 • Loops

Access for free at openstax.org

5.2 For loop

Learning objectives
By the end of this section you should be able to

• Explain the for loop construct.
• Use a for loop to implement repeating tasks.

For loop
In Python, a container can be a range of numbers, a string of characters, or a list of values. To access objects
within a container, an iterative loop can be designed to retrieve objects one at a time. A for loop iterates over
all elements in a container. Ex: Iterating over a class roster and printing students' names.

CHECKPOINT

For loop example for iterating over a container object

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/5-2-for-
loop)

CONCEPTS IN PRACTICE

For loop over a string container

A string variable can be considered a container of multiple characters, and hence can be iterated on. Given
the following code, answer the questions.

str_var = "A string"

count = 0
for c in str_var:

count += 1

print(count)

1. What is the program's output?
a. 7
b. 8
c. 9

2. What's the code's output if the line count += 1 is replaced with count *= 2?
a. 0
b. 16
c. 28

3. What is printed if the code is changed as follows?

5.2 • For loop 125

str_var = "A string"

count = 0
for c in str_var:

count += 1
New line
print(c, end = '*')

print(count)

a. A string*
b. A*s*t*r*i*n*g*
c. A* *s*t*r*i*n*g*

Range() function in for loop
A for loop can be used for iteration and counting. The range() function is a common approach for
implementing counting in a for loop. A range() function generates a sequence of integers between the two
numbers given a step size. This integer sequence is inclusive of the start and exclusive of the end of the
sequence. The range() function can take up to three input values. Examples are provided in the table below.

Range function Description Example Output

range(end)
• Generates a sequence beginning at 0

until end.
• Step size: 1

range(4) 0, 1, 2, 3

range(start, end)
• Generates a sequence beginning at

start until end.
• Step size: 1

range(0, 3) 0, 1, 2

range(2, 6) 2, 3, 4, 5

range(-13,
-9)

-13, -12,
-11, -10

range(start, end,
step)

• Generates a sequence beginning at
start until end.

• Step size: step

range(0, 4,
1)

0, 1, 2, 3

range(1, 7,
2)

1, 3, 5

Table 5.1 Using the range() function.

126 5 • Loops

Access for free at openstax.org

Range function Description Example Output

range(3,
-2, -1)

3, 2, 1, 0,
-1

range(10,
0, -4)

10, 6, 2

Table 5.1 Using the range() function.

EXAMPLE 5.2

Two programs printing all integer multiples of 5 less than 50 (Notice the compactness of the for
construction compared to the while)

For loop condition using
range() function to print
all multiples of 5 less than 50
for i in range(0, 50, 5):

print(i)

While loop implementation of printing
multiples of 5 less than 50

Initialization
i = 0
Limiting the range to be less than 50
while i < 50:

print(i)
i+=5

Table 5.2

CONCEPTS IN PRACTICE

For loop using a range() function

4. What are the arguments to the range() function for the increasing sequence of every 3rd integer from
10 to 22 (inclusive of both ends)?
a. range(10, 23, 3)
b. range(10, 22, 3)
c. range(22, 10, -3)

5. What are the arguments to the range() function for the decreasing sequence of every integer from 5
to 1 (inclusive of both ends)?
a. range(5, 1, 1)
b. range(5, 1, -1)
c. range(5, 0, -1)

5.2 • For loop 127

6. What is the sequence generated from range(-1, -2, -1)?
a. 1
b. -1, -2
c. -2

7. What is the output of the range(1, 2, -1)?
a. 1
b. 1, 2
c. empty sequence

8. What is the output of range(5, 2)?
a. 0, 2, 4
b. 2, 3, 4
c. empty sequence

TRY IT

Counting spaces

Write a program using a for loop that takes in a string as input and counts the number of spaces in the
provided string. The program must print the number of spaces counted. Ex: If the input is "Hi everyone",
the program outputs 1.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/5-2-for-
loop)

TRY IT

Sequences

Write a program that reads two integer values, n1 and n2, with n1 < n2, and performs the following tasks:

1. Prints all even numbers between the two provided numbers (inclusive of both), in ascending order.
2. Prints all odd numbers between the two provided numbers (exclusive of both), in descending order.

Input: 2 8

prints
2 4 6 8
7 5 3

Note: the program should return an error message if the second number is smaller than the first.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/5-2-for-
loop)

128 5 • Loops

Access for free at openstax.org

5.3 Nested loops

Learning objectives
By the end of this section you should be able to

• Implement nested while loops.
• Implement nested for loops.

Nested loops
A nested loop has one or more loops within the body of another loop. The two loops are referred to as outer
loop and inner loop. The outer loop controls the number of the inner loop's full execution. More than one
inner loop can exist in a nested loop.

CHECKPOINT

Nested while loops

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-3-nested-loops)

EXAMPLE 5.3

Available appointments

Consider a doctor's office schedule. Each appointment is 30 minutes long. A program to print available
appointments can use a nested for loop where the outer loop iterates over the hours, and the inner loop
iterates over the minutes. This example prints time in hours and minutes in the range between 8:00am and
10:00am. In this example, the outer loop iterates over the time's hour portion between 8 and 9, and the
inner loop iterates over the time's minute portion between 0 and 59.

hour = 8
minute = 0
while hour <= 9:

while minute <= 59:
print(hour, ":", minute)
minute += 30

hour += 1
minute = 0

The above code's output is:

8 : 0
8 : 30
9 : 0
9 : 30

5.3 • Nested loops 129

CONCEPTS IN PRACTICE

Nested while loop question set

1. Given the following code, how many times does the print statement execute?

i = 1
while i <= 5:

j = 1
while i + j <= 5:

print(i, j)
j += 1

i += 1

a. 5
b. 10
c. 25

2. What is the output of the following code?

i = 1

while i <= 2:
j = 1
while j <= 3:

print('*', end = '')
j += 1

print()
i += 1

a. ******
b. ***

c. **

**
**

3. Which program prints the following output?

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

a. i = 1
while i <= 4:

while j <= 4:
print(i * j, end = ' ')
j += 1

print()

130 5 • Loops

Access for free at openstax.org

i += 1
b. i = 1

while i <= 4:
j = 1
while j <= 4:

print(i * j, end = ' ')
j += 1

print()
i += 1

c. i = 1
while i <= 4:

j = 1
while j <= 4:

print(i * j, end = ' ')
j += 1

i += 1

Nested for loops
A nested for loop can be implemented and used in the same way as a nested while loop. A for loop is a
preferable option in cases where a loop is used for counting purposes using a range() function, or when
iterating over a container object, including nested situations. Ex: Iterating over multiple course rosters. The
outer loop iterates over different courses, and the inner loop iterates over the names in each course roster.

CHECKPOINT

Nested for loops

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-3-nested-loops)

CONCEPTS IN PRACTICE

Nested loop practices

4. Given the following code, how many times does the outer loop execute?

for i in range(3):
for j in range(4):

print(i, ' ', j)

a. 3
b. 4
c. 12

5. Given the following code, how many times does the inner loop execute?

for i in range(3):

5.3 • Nested loops 131

for j in range(4):
print(i, ' ', j)

a. 4
b. 12
c. 20

6. Which program prints the following output?

0 1 2 3
0 2 4 6
0 3 6 9

a. for i in range(4):
for j in range(4):

print(i * j, end = ' ')
print()

b. for i in range(1, 4):
for j in range(4):

print(i * j)
c. for i in range(1, 4):

for j in range(4):
print(i * j, end = ' ')

print()

MIXED LOOPS

The two for and while loop constructs can also be mixed in a nested loop construct. Ex: Printing even
numbers less than a given number in a list. The outer loop can be implemented using a for loop iterating
over the provided list, and the inner loop iterates over all even numbers less than a given number from the
list using a while loop.

numbers = [12, 5, 3]

i = 0
for n in numbers:

while i < n:
print (i, end = " ")
i += 2

i = 0
print()

132 5 • Loops

Access for free at openstax.org

TRY IT

Printing a triangle of numbers

Write a program that prints the following output:

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7
1 2 3 4 5 6
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

Finish!

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-3-nested-loops)

TRY IT

Printing two triangles

Write a program that prints the following output using nested while and for loops:

**
*
++++
+++
++
+

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-3-nested-loops)

5.4 Break and continue

Learning objectives
By the end of this section you should be able to

• Analyze a loop's execution with break and continue statements.
• Use break and continue control statements in while and for loops.

5.4 • Break and continue 133

Break
A break statement is used within a for or a while loop to allow the program execution to exit the loop once a
given condition is triggered. A break statement can be used to improve runtime efficiency when further loop
execution is not required.

Ex: A loop that looks for the character "a" in a given string called user_string. The loop below is a regular
for loop for going through all the characters of user_string. If the character is found, the break statement
takes execution out of the for loop. Since the task has been accomplished, the rest of the for loop execution
is bypassed.

user_string = "This is a string."
for i in range(len(user_string)):

if user_string[i] == 'a':
print("Found at index:", i)
break

CHECKPOINT

Break statement in a while loop

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-4-break-and-continue)

INFINITE LOOP

A break statement is an essential part of a loop that does not have a termination condition. A loop without
a termination condition is known as an infinite loop. Ex: An infinite loop that counts up starting from 1 and
prints the counter's value while the counter's value is less than 10. A break condition is triggered when the
counter's value is equal to 10, and hence the program execution exits.

counter = 1
while True:

if counter >= 10:
break

print(counter)
counter += 1

CONCEPTS IN PRACTICE

Using a break statement

1. What is the following code's output?

134 5 • Loops

Access for free at openstax.org

string_val = "Hello World"
for c in string_val:

if c == " ":
break

print(c)

a. Hello
b. Hello World
c. H

e
l
l
o

2. Given the following code, how many times does the print statement get executed?

i = 1
while True:

if i%3 == 0 and i%5 == 0:
print(i)
break

i += 1

a. 0
b. 1
c. 15

3. What is the final value of i?

i = 1
count = 0
while True:

if i%2 == 0 or i%3 == 0:
count += 1

if count >= 5:
print(i)
break

i += 1

a. 5
b. 8
c. 30

Continue
A continue statement allows for skipping the execution of the remainder of the loop without exiting the loop
entirely. A continue statement can be used in a for or a while loop. After the continue statement's
execution, the loop expression will be evaluated again and the loop will continue from the loop's expression. A
continue statement facilitates the loop's control and readability.

5.4 • Break and continue 135

CHECKPOINT

Continue statement in a while loop

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-4-break-and-continue)

CONCEPTS IN PRACTICE

Using a continue statement

4. Given the following code, how many times does the print statement get executed?

i = 10
while i >= 0:

i -= 1
if i%3 != 0:

continue
print(i)

a. 3
b. 4
c. 11

5. What is the following code's output?

for c in "hi Ali":
if c == " ":

continue
print(c)

a. h
i

A
l
i

b. h
i
A
l
i

c. hi
Ali

136 5 • Loops

Access for free at openstax.org

TRY IT

Using break control statement in a loop

Write a program that reads a string value and prints "Found" if the string contains a space character. Else,
prints "Not found".

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-4-break-and-continue)

TRY IT

Using a continue statement in a loop

Complete the following code so that the program calculates the sum of all the numbers in list my_list that
are greater than or equal to 5.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-4-break-and-continue)

5.5 Loop else

Learning objectives
By the end of this section you should be able to

• Use loop else statement to identify when the loop execution is interrupted using a break statement.
• Implement a loop else statement with a for or a while loop.

Loop else
A loop else statement runs after the loop's execution is completed without being interrupted by a break
statement. A loop else is used to identify if the loop is terminated normally or the execution is interrupted by
a break statement.

Ex: A for loop that iterates over a list of numbers to find if the value 10 is in the list. In each iteration, if 10 is
observed, the statement "Found 10!" is printed and the execution can terminate using a break statement. If
10 is not in the list, the loop terminates when all integers in the list are evaluated, and hence the else
statement will run and print "10 is not in the list." Alternatively, a Boolean variable can be used to
track whether number 10 is found after loop's execution terminates.

EXAMPLE 5.4

Finding the number 10 in a list

In the code examples below, the code on the left prints "Found 10!" if the variable i's value is 10. If the
value 10 is not in the list, the code prints "10 is not in the list.". The code on the right uses the
seen Boolean variable to track if the value 10 is in the list. After loop's execution, if seen's value is still false,

5.5 • Loop else 137

the code prints "10 is not in the list.".

numbers = [2, 5, 7, 11, 12]
for i in numbers:

if i == 10:
print("Found 10!")
break

else:
print("10 is not in the list.")

numbers = [2, 5, 7, 11, 12]
seen = False
for i in numbers:

if i == 10:
print("Found 10!")
seen = True

if seen == False:
print("10 is not in the list.")

Table 5.3

CHECKPOINT

Loop else template

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/5-5-loop-
else)

CONCEPTS IN PRACTICE

Loop else practices

1. What is the output?

n = 16
exp = 0
i = n
while i > 1:

if n%2 == 0:
i = i/2
exp += 1

else:
break

else:
print(n,"is 2 to the", exp)

a. 16 is 2 to the 3
b. 16 is 2 to the 4
c. no output

2. What is the output?

138 5 • Loops

Access for free at openstax.org

n = 7
exp = 0
i = n
while i > 1:

if n%2 == 0:
i = i//2
exp += 1

else:
break

else:
print(n,"is 2 to the", exp)

a. no output
b. 7 is 2 to the 3
c. 7 is 2 to the 2

3. What is the output?

numbers = [1, 2, 2, 6]
for i in numbers:

if i >= 5:
print("Not all numbers are less than 5.")
break

else:
print(i)
continue

else:
print("all numbers are less than 5.")

a. 1
2
2
6
Not all numbers are less than 5.

b. 1
2
2
Not all numbers are less than 5.

c. 1
2
2
6
all numbers are less than 5.

5.5 • Loop else 139

TRY IT

Sum of values less than 10

Write a program that, given a list, calculates the sum of all integer values less than 10. If a value greater
than or equal to 10 is in the list, no output should be printed. Test the code for different values in the list.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-5-loop-else)

5.6 Chapter summary

Highlights from this chapter include:

• A while loop runs a set of statements, known as the loop body, while a given condition, known as the
loop expression, is true.

• A for loop can be used to iterate over elements of a container object.
• A range() function generates a sequence of integers between the two numbers given a step size.
• A nested loop has one or more loops within the body of another loop.
• A break statement is used within a for or a while loop to allow the program execution to exit the loop

once a given condition is triggered.
• A continue statement allows for skipping the execution of the remainder of the loop without exiting the

loop entirely.
• A loop else statement runs after the loop's execution is completed without being interrupted by a break

statement.

At this point, you should be able to write programs with loop constructs. The programming practice below ties
together most topics presented in the chapter.

Function Description

range(end) Generates a sequence beginning at 0 until end with step size of 1.

range(start, end) Generates a sequence beginning at start until end with step size of 1.

range(start, end, s) Generates a sequence beginning at start until end with the step size of s.

Loop constructs Description

Table 5.4 Chapter 5 reference.

140 5 • Loops

Access for free at openstax.org

Function Description

while loop

initialization
while expression:

loop body

statements after the loop

for loop

initialization
for loop_variable in container:

loop body

statements after the loop

Nested while loop

while outer_loop_expression:
outer loop body (1)
while inner_loop_expression:

inner loop body
outer loop body (2)

statements after the loop

break statement

initialization
while loop_expression:

loop body
if break_condition:

break
remaining body of loop

statements after the loop

Table 5.4 Chapter 5 reference.

5.6 • Chapter summary 141

Function Description

continue statement

initialization
while loop_expression:

loop body
if continue_condition:

continue
remaining body of loop

statements after the loop

Loop else statement

initialization
for loop_expression:

loop body
if break_condition:

break
remaining body of loop

else:
loop else statement

statements after the loop

Table 5.4 Chapter 5 reference.

TRY IT

Prime numbers

Write a program that takes in a positive integer number (N) and prints out the first N prime numbers on
separate lines.

Note: A prime number is a number that is not divisible by any positive number larger than 1. To check
whether a number is prime, the condition of number % i != 0 can be checked for i greater than 1 and
less than number.

Ex: if N = 6, the output is:

2
3
5
7

142 5 • Loops

Access for free at openstax.org

11
13

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-6-chapter-summary)

5.6 • Chapter summary 143

144 5 • Loops

Access for free at openstax.org

Figure 6.1 credit: modification of work "IMG_3037", by Jay Roc/Flickr, Public Domain

Chapter Outline
6.1 Defining functions
6.2 Control flow
6.3 Variable scope
6.4 Parameters
6.5 Return values
6.6 Keyword arguments
6.7 Chapter summary

Introduction
Functions are the next step toward creating optimized code as a software developer. If the same block of code
is reused repeatedly, a function allows the programmer to write the block of code once, name the block, and
use the code as many times as needed by calling the block by name. Functions can read in values and return
values to perform tasks, including complex calculations.

Like branching statements discussed in the Decisions chapter, functions allow different paths of execution
through a program, and this chapter discusses control flow and the scope of variables in more detail.

6.1 Defining functions

Learning objectives
By the end of this section you should be able to

• Identify function calls in a program.
• Define a parameterless function that outputs strings.
• Describe benefits of using functions.

Functions
6

Calling a function
Throughout the book, functions have been called to perform tasks. Ex: print() prints values, and sqrt()
calculates the square root. A function is a named, reusable block of code that performs a task when called.

CHECKPOINT

Example: Simple math program

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-1-defining-functions)

CONCEPTS IN PRACTICE

Identifying function calls

1. Which line has a function call?

1 input_num = 14
2 offset_num = input_num - 10
3 print(offset_num)

a. line 1
b. line 2
c. line 3

2. How many times is print() called?

print("Please log in")
username = input("Username:")
password = input("Password:")
print("Login successful")
print("Welcome,", username)

a. 1
b. 3
c. 5

3. How many function calls are there?

Use float() to convert input for area calculation
width = float(input("Enter width:"))
height = float(input("Enter height:"))
print("Area is", width*height)

a. 3
b. 5
c. 6

146 6 • Functions

Access for free at openstax.org

Defining a function
A function is defined using the def keyword. The first line contains def followed by the function name (in
snake case), parentheses (with any parameters—discussed later), and a colon. The indented body begins with
a documentation string describing the function's task and contains the function statements. A function must
be defined before the function is called.

CHECKPOINT

Example: Welcome message function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-1-defining-functions)

CONCEPTS IN PRACTICE

Defining functions

4. What's wrong with the first line of the function definition?

def water_plant:

a. A docstring should go after the colon.
b. Parentheses should go after water_plant.
c. def should be define before water_plant.

5. What is the output?

def print_phone_num():
print("Phone: (", 864, ")", 555, "-", 0199)

print("User info:")
print_phone_num()

a. Phone: (864) 555 - 1000
User info:
Phone: (864) 555 - 1000

b. User info:
c. User info:

Phone: (864) 555 - 1000

6. Which statement calls a function named print_pc_specs()?
a. print_pc_specs
b. print_pc_specs()
c. print_pc_specs():

7. Which is an appropriate name for a function that calculates a user's taxes?
a. calc_tax
b. calculate user tax
c. c_t

6.1 • Defining functions 147

Benefits of functions
A function promotes modularity by putting code statements related to a single task in a separate group. The
body of a function can be executed repeatedly with multiple function calls, so a function promotes reusability.
Modular, reusable code is easier to modify and is shareable among programmers to avoid reinventing the
wheel.

CHECKPOINT

Improving a program with a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-1-defining-functions)

CONCEPTS IN PRACTICE

Improving programs with functions

Consider the code above.

8. If the points were changed from floats to integers, how many statements would need to be changed in
the original and revised programs respectively?
a. 3, 1
b. 4, 4
c. 12, 4

9. How many times can calc_distance() be called?
a. 1
b. 3
c. many

TRY IT

Cinema concession stand

Write a function, concessions(), that prints the food and drink options at a cinema.

Given:

concessions()

The output is:

Food/Drink Options:
Popcorn: $8-10
Candy: $3-5
Soft drink: $5-7

148 6 • Functions

Access for free at openstax.org

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-1-defining-functions)

TRY IT

Terms and conditions prompt

Write a function, terms(), that asks the user to accept the terms and conditions, reads in Y/N, and outputs
a response. In the main program, read in the number of users and call terms() for each user.

Given inputs 1 and "Y", the output is:

Do you accept the terms and conditions?
Y
Thank you for accepting.

Given inputs 2, "N", and "Y", the output is:

Do you accept the terms and conditions?
N
Have a good day.
Do you accept the terms and conditions?
Y
Thank you for accepting.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-1-defining-functions)

6.2 Control flow

Learning objectives
By the end of this section you should be able to

• Identify the control flow of a program.
• Describe how control flow moves between statements and function calls.

Control flow and functions
Control flow is the sequence of program execution. A program's control flow begins at the main program but
rarely follows a strict sequence. Ex: Control flow skips over lines when a conditional statement isn't executed.

When execution reaches a function call, control flow moves to where the function is defined and executes the
function statements. Then, control flow moves back to where the function was called and continues the
sequence.

6.2 • Control flow 149

CHECKPOINT

Calling a brunch menu function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-2-control-flow)

CONCEPTS IN PRACTICE

Following the control flow

1. Which line is executed first?

1 def park_greet():
2 """Output greeting."""
3 print("Welcome. Open sunrise to sunset.")
4
5 car_count = 1
6 park_greet()
7 if car_count > 50:
8 # Direct to extra parking lot

a. 1
b. 3
c. 5

2. Control flow moves to line 9, and park_greet() is called. Which line does control flow move to next?

1 def extra_lot():
2 # Function definition
3
4 def park_greet():
5 """Output greeting."""
6 print("Welcome. Open sunrise to sunset.")
7
8 car_count = 1
9 park_greet()

10 if car_count > 50:
11 extra_lot()

a. 1
b. 4
c. 10

3. Control flow moves to line 12, and extra_lot() is called. Which line does control flow move to after
line 3 is executed?

1 def extra_lot():
2 """Output extra parking lot info."""

150 6 • Functions

Access for free at openstax.org

3 print("Take the second right to park.")
4
5 def park_greet():
6 """Output greeting."""
7 print("Welcome. Open sunrise to sunset.")
8
9 car_count = 1

10 park_greet()
11 if car_count > 50:
12 extra_lot()

a. 5
b. 8
c. 12

4. What is the output?

def park_greet():
"""Output greeting."""
print("Welcome to the park")

print("Open sunrise to sunset")

park_greet()

a. Welcome to the park
b. Welcome to the park

Open sunrise to sunset
c. Open sunrise to sunset

Welcome to the park

Functions calling functions
Functions frequently call other functions to keep the modularity of each function performing one task. Ex: A
function that calculates an order total may call a function that calculates sales tax. When a function called from
another function finishes execution, control flow returns to the calling function.

CHECKPOINT

Example: Book club email messages

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-2-control-flow)

CONCEPTS IN PRACTICE

Functions calling functions

Consider the book club example above.

6.2 • Control flow 151

5. How many function calls occur during the execution of the program?
a. 2
b. 3
c. 6

6. When line 3 is reached and executed, which line does control flow return to?
a. 1
b. 11
c. 16

TRY IT

Updated terms and conditions prompt

Write an updated function, terms(), that asks the user to accept the terms and conditions, reads in Y/N,
and outputs a response by calling accepted() or rejected(). accepted() prints "Thank you for
accepting the terms." and rejected() prints "You have rejected the terms. Thank you.".

Given inputs 2, "Y" and "N", the output is:

Do you accept the terms and conditions?
Y
Thank you for accepting the terms.

Given a function call to terms() and input "N", the output is:

Do you accept the terms and conditions?
N
You have rejected the terms. Thank you.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-2-control-flow)

TRY IT

Laundromat information

Write a program that uses three functions to print information about a laundromat, Liam's Laundry:

• laundromat_info(): Prints the name, Liam's Laundry, and hours of operation, 7a - 11p, and calls
washers_open() and dryers_open()

• washers_open(): Reads an integer, assigns washer_count with the value, and prints washer_count
• dryers_open(): Reads an integer, assigns dryer_count with the value, and prints dryer_count

The main program should just call laundromat_info().

152 6 • Functions

Access for free at openstax.org

Given inputs 50 and 40, the output is:

Liam's Laundry
7a - 11p
Open washers: 50
Open dryers: 40

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-2-control-flow)

6.3 Variable scope

Learning objectives
By the end of this section you should be able to

• Identify the scope of a program's variables.
• Discuss the impact of a variable's scope.

Global scope
A variable's scope is the part of a program where the variable can be accessed. A variable created outside of a
function has global scope and can be accessed anywhere in the program. A Python program begins in global
scope, and the global scope lasts for the entire program execution.

CHECKPOINT

Global variables in a program with a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-3-variable-scope)

CONCEPTS IN PRACTICE

Global variables

1. Which variables are global?

num = float(input())
num_sq = num * num
print(num, "squared is", num_sq)

a. num only
b. num_sq only
c. num and num_sq

2. Which variables have global scope?

def print_square():

6.3 • Variable scope 153

num_sq = num * num
print(num, "squared is", num_sq)

num = float(input())
print_square()

a. num only
b. num_sq only
c. num and num_sq

3. Which functions can access num?

def print_double():
num_d = num * 2
print(num, "doubled is", num_d)

def print_square():
num_sq = num * num
print(num, "squared is", num_sq)

num = float(input())
print_double()
print_square()

a. print_double()
b. print_square()
c. print_double() and print_square()

Local scope
A variable created within a function has local scope and only exists within the function. A local variable cannot
be accessed outside of the function in which the variable was created. After a function finishes executing, the
function's local variables no longer exist.

CHECKPOINT

Global and local variables in a program with a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-3-variable-scope)

CONCEPTS IN PRACTICE

Local variables

4. Which variables are local?

154 6 • Functions

Access for free at openstax.org

def print_time():
out_str = "Time is " + str(hour) + ":" + str(min)
print(out_str)

hour = int(input())
min = int(input())
print_time()

a. hour and min
b. out_str
c. hour, min, and out_str

5. Which variables are local?

def print_greeting():
print(out_str)

hour = int(input())
min = int(input())
if hour < 12:

out_str = "Good morning"
else:

out_str = "Good day"
print_greeting()

a. hour and min
b. out_str
c. none

6. Which functions directly access out_str?

def print_greeting():
print("Good day,")
print_time()

def print_time():
out_str = "Time is " + str(hour) + ":" + str(min)
print(out_str)

hour = int(input())
min = int(input())
print_greeting()

a. print_greeting()
b. print_time()
c. print_greeting() and print_time()

6.3 • Variable scope 155

Using local and global variables together
Python allows global and local variables to have the same name, which can lead to unexpected program
behavior. A function treats a variable edited within the function as a local variable unless told otherwise. To edit
a global variable inside a function, the variable must be declared with the global keyword.

CHECKPOINT

Editing global variables in a program with a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-3-variable-scope)

CONCEPTS IN PRACTICE

Using both local and global variables

Consider the following variations on the example program with the input 9.

7. What is the output?

def update_hour():
tmp = hour
if is_dst:

tmp += 1
else:

tmp -= 1

is_dst = True
hour = int(input("Enter hour: "))
update_hour()
print("New hour:", hour)

a. New hour: 9
b. New hour: 10
c. Error

8. What is the output?

def update_hour():
new_hour = hour
if is_dst:

new_hour += 1
else:

new_hour -= 1

is_dst = True
hour = int(input("Enter hour: "))
update_hour()
print("New hour:", new_hour)

156 6 • Functions

Access for free at openstax.org

a. New hour: 9
b. New hour: 10
c. Error

9. What is the output?

Enter hour: "))
update_hour()
print("New hour:", new_hour)
def update_hour():

global new_hour
new_hour = hour
if is_dst:

new_hour += 1
else:

new_hour -= 1

is_dst = True
hour = int(input("Enter hour: "))
update_hour()
print("New hour:", new_hour)

a. New hour: 9
b. New hour: 10
c. Error

BENEFITS OF LIMITING SCOPE

A programmer might ask, "Why not just make all variables global variables to avoid access errors?" Making
every variable global can make a program messy. Ex: A programmer debugging a large program discovers
a variable has the wrong value. If the whole program can modify the variable, then the bug could be
anywhere in the large program. Limiting a variable's scope to only what's necessary and restricting global
variable use make a program easier to debug, maintain, and update.

TRY IT

Battle royale game launch

Write a program that reads in a selected game mode and calls one of two functions to launch the game. If
the input is "br", call battle_royale(). Otherwise, call practice().

battle_royale():

• Reads in the number of players.
• Computes the number of teammates still needed. A full team is 3 players.
• Calls the function find_teammates() with the calculated number.
• Prints "Match starting . . .".

6.3 • Variable scope 157

practice():

• Reads in a string representing the desired map.
• Prints "Launching practice on [desired map]".

Note: find_teammates() is provided and does not need to be edited.

Given input:

br
1

The output is:

Finding 2 players...
Match starting...

Given input:

p
Queen's Canyon

The output is:

Launching practice on Queen's Canyon

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-3-variable-scope)

6.4 Parameters

Learning objectives
By the end of this section you should be able to

• Identify a function's arguments and parameters.
• Describe how mutability affects how a function can modify arguments.

Arguments and parameters
What if a programmer wants to write a function that prints the contents of a list? Good practice is to pass
values directly to a function rather than relying on global variables. A function argument is a value passed as
input during a function call. A function parameter is a variable representing the input in the function
definition. Note: The terms "argument" and "parameter" are sometimes used interchangeably in conversation
and documentation.

158 6 • Functions

Access for free at openstax.org

CHECKPOINT

Global and local variables in a program with a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-4-parameters)

CONCEPTS IN PRACTICE

Arguments and parameters

Consider the following:

1 def print_welcome(name):
2 print(f"Welcome {name}!")
3
4 username = int(input("Enter new username: "))
5 print_welcome(username)

1. Which is an argument?
a. name
b. username
c. name and username

2. Which is a parameter?
a. name
b. username
c. name and username

3. What is the scope of name?
a. print_welcome() only
b. whole program

4. What would happen if username was changed to name on lines 4 and 5?
a. same output
b. error/wrong output

Multiple arguments and parameters
Functions can have multiple parameters. Ex: A function uses two parameters, length and width, to compute
the square footage of a room. Function calls must use the correct order and number of arguments to avoid
undesired behavior and errors (unless using optional or keyword arguments as discussed later).

EXAMPLE 6.1

Using multiple arguments in a function call

6.4 • Parameters 159

def print_div(op_1, op_2):
""" Prints division operation """
print(f"{op_1}/{op_2} = {op_1/op_2}")

num_1 = 6
num_2 = 3
print_div(num_1, num_2) # Prints "6/3 = 2.0"
print_div(num_2, num_1) # Prints "3/6 = 0.5"
print_div(num_1) # Error: Missing argument: op_2

CONCEPTS IN PRACTICE

Multiple arguments and parameters

Consider the following:

def calc_distance(x1, y1, x2, y2):
dist = math.sqrt((x2-x1)**2 + (y2-y1)**2)
print(dist)

p1_x =int(input("Enter point 1's x: "))
p1_y =int(input("Enter point 1's y: "))
p2_x =int(input("Enter point 2's x: "))
p2_y =int(input("Enter point 2's y: "))
calc_distance(p1_x, p1_y, p2_x, p2_y)

5. Which is an argument?
a. p1_x
b. x1

6. Which is a parameter?
a. p1_y
b. y1

7. What would be the value of x2 for the function call, calc_distance(2, 4, 3, 6)?
a. 2
b. 4
c. 3
d. 6
e. Error

Modifying arguments and mutability
In Python, a variable is a name that refers to an object stored in memory, aka an object reference, so Python

160 6 • Functions

Access for free at openstax.org

uses a pass-by-object-reference system. If an argument is changed in a function, the changes are kept or lost
depending on the object's mutability. A mutable object can be modified after creation. A function's changes to
the object then appear outside the function. An immutable object cannot be modified after creation. So a
function must make a local copy to modify, and the local copy's changes don't appear outside the function.

Programmers should be cautious of modifying function arguments as these side effects can make programs
difficult to debug and maintain.

EXAMPLE 6.2

Converting temperatures

What are the values of weekend_temps and type after convert_temps() finishes?

def convert_temps(temps, unit):
if unit == "F":

for i in range(len(temps)):
temps[i] = (temps[i]-32) * 5/9

unit = "C"
else:

for i in range(len(temps)):
temps[i] = (temps[i]*9/5) + 32

unit = "F"

Weekend temperatures in Fahrenheit.
wknd_temps = [49.0, 51.0, 44.0]
deg_sign = u"\N{DEGREE SIGN}" # Unicode
metric = "F"

Convert from Fahrenheit to Celsius.
convert_temps(wknd_temps, metric)
for temp in wknd_temps:

print(f"{temp:.2f}{deg_sign}{metric}", end=" ")

The output is 9.44°F 10.56°F 6.67°F. type was changed to "C" in the function but didn't keep the
change outside of the function. Why is the list argument change kept and not the string argument change?
(Hint: A list is mutable. A string is immutable.)

CHECKPOINT

Exploring a faulty function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-4-parameters)

6.4 • Parameters 161

CONCEPTS IN PRACTICE

Mutability and function arguments

8. In convert_temps(), wknd_temps and temps refer to ________ in memory.
a. the same object
b. different objects

9. After unit is assigned with "C", metric and unit refer to ________ in memory.
a. the same object
b. different objects

10. deg_sign is a string whose value cannot change once created. deg_sign is ________.
a. immutable
b. mutable

11. On line 16, unit ________.
a. refers to an object with the value "C"
b. does not exist

TRY IT

Printing right triangle area

Write a function, print_area(), that takes in the base and height of a right triangle and prints the
triangle's area. The area of a right triangle is , where b is the base and h is the height.

Given input:

3
4

The output is:

Triangle area: 6.0

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-4-parameters)

TRY IT

Curving scores

Write a function, print_scores(), that takes in a list of test scores and a number representing how many

162 6 • Functions

Access for free at openstax.org

points to add. For each score, print the original score and the sum of the score and bonus. Make sure not to
change the list.

Given function call:

print_scores([67, 68, 72, 71, 69], 10)

The output is:

67 would be updated to 77
68 would be updated to 78
72 would be updated to 82
71 would be updated to 81
69 would be updated to 79

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-4-parameters)

6.5 Return values

Learning objectives
By the end of this section you should be able to

• Identify a function's return value.
• Employ return statements in functions to return values.

Returning from a function
When a function finishes, the function returns and provides a result to the calling code. A return statement
finishes the function execution and can specify a value to return to the function's caller. Functions introduced
so far have not had a return statement, which is the same as returning None, representing no value.

CHECKPOINT

Returning a value from a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-5-return-values)

CONCEPTS IN PRACTICE

Using return statements

1. What is returned by calc_mpg(miles, gallons)?

def calc_mpg(miles, gallons):

6.5 • Return values 163

mpg = miles/gallons
return mpg

a. mpg
b. None
c. Error

2. What is returned by calc_sqft()?

def calc_sqft(length, width):
sqft = length * width
return

a. sqft
b. None
c. Error

3. What is the difference between hw_1() and hw_2()?

def hw_1():
print("Hello world!")
return

def hw_2():
print("Hello world!")

a. hw_1() returns a string, hw_2() does not
b. hw_1() returns None, hw_2() does not
c. no difference

Using multiple return statements
Functions that have multiple execution paths may use multiple return statements. Ex: A function with an
if-else statement may have two return statements for each branch. Return statements always end the
function and return control flow to the calling code.

In the table below, calc_mpg() takes in miles driven and gallons of gas used and calculates a car's miles per
gallon. calc_mpg() checks if gallons is 0 (to avoid division by 0), and if so, returns -1, a value often used to

164 6 • Functions

Access for free at openstax.org

indicate a problem.

def calc_mpg(miles, gallons):
if gallons > 0:

mpg = miles/gallons
return mpg

else:
print("Gallons can't be 0")
return -1

car_1_mpg = calc_mpg(448, 16)
print("Car 1's mpg is", car_1_mpg)
car_2_mpg = calc_mpg(300, 0)
print("Car 2's mpg is", car_2_mpg)

Car 1's mpg is 28.0
Gallons can't be 0
Car 2's mpg is -1

Table 6.1 Calculating miles-per-gallon and checking for division by zero.

CONCEPTS IN PRACTICE

Multiple return statements

4. What does yarn_weight(3) return?

def yarn_weight(num):
if num == 0:

return "lace"
elif num == 1:

return "sock"
elif num == 2:

return "sport"
elif num == 3:

return "dk"
elif num == 4:

return "worsted"
elif num == 5:

return "bulky"
else:

return "super bulky"

a. "lace"
b. "dk"
c. "super bulky"

5. What is the output?

def inc_volume(level, max):

6.5 • Return values 165

if level < max:
return level
level += 1

else:
return level

vol1 = inc_volume(9, 10)
print(vol1)
vol2 = inc_volume(10, 10)
print(vol2)

a. 9
10

b. 10
10

c. 10
11

Using functions as values
Functions are objects that evaluate to values, so function calls can be used in expressions. A function call can
be combined with other function calls, variables, and literals as long as the return value is compatible with the
operation.

CHECKPOINT

Using function calls in expressions

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-5-return-values)

CONCEPTS IN PRACTICE

Using function values

6. What is the updated value of bill?

def tax(total):
return .06 * total

def auto_tip(total):
return .2 * total

bill = 100.0
bill += tax(bill) + auto_tip(bill)

a. 26.0

166 6 • Functions

Access for free at openstax.org

b. 126.0

7. What is the value of val2?

def sq(num):
return num * num

def offset(num):
return num - 2

val = 5
val2 = sq(offset(val))

a. 9
b. 23

TRY IT

Estimated days alive

Write a function, days_alive(), that takes in an age in years and outputs the estimated days the user has
been alive as an integer. Assume each year has 365.24 days. Use round(), which takes a number and
returns the nearest whole number.

Then write a main program that reads in a user's age and outputs the result of days_alive().

Given input:

21

The output is:

You have been alive about 7670 days.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-5-return-values)

TRY IT

Averaging lists

Write a function, avg_list(), that takes in a list and returns the average of the list values.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-5-return-values)

6.5 • Return values 167

6.6 Keyword arguments

Learning objectives
By the end of this section you should be able to

• Describe the difference between positional and keyword arguments.
• Create functions that use positional and keyword arguments and default parameter values.

Keyword arguments
So far, functions have been called using positional arguments, which are arguments that are assigned to
parameters in order. Python also allows keyword arguments, which are arguments that use parameter names
to assign values rather than order. When mixing positional and keyword arguments, positional arguments
must come first in the correct order, before any keyword arguments.

CHECKPOINT

Using keyword arguments

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-6-keyword-arguments)

CONCEPTS IN PRACTICE

Using keyword and positional arguments

Consider the following function:

def greeting(msg, name, count):
i = 0
for i in range(0, count):

print(msg, name)

1. Which is the positional argument in greeting(count=1, name="Ash", msg="Hiya")?
a. count=1
b. name="Ash"
c. msg="Hiya"
d. None

2. What is the output of greeting(count=2, name="Ash", msg="Hiya")?
a. Ash Hiya

Ash Hiya
b. Hiya Ash

Hiya Ash

3. Which is the positional argument in greeting("Welcome", count=1, name="Anita")?
a. "Welcome"
b. count=1

168 6 • Functions

Access for free at openstax.org

c. name="Anita"

4. Which function call would produce an error?
a. greeting("Morning", "Morgan", count=3)
b. greeting(count=1,"Hi", "Bea")
c. greeting("Cheers", "Colleagues", 10)

Default parameter values
Functions can define default parameter values to use if a positional or keyword argument is not provided for
the parameter. Ex: def season(m, d, hemi="N"): defines a default value of "N" for the hemi parameter.
Note: Default parameter values are only defined once to be used by the function, so mutable objects (such as
lists) should not be used as default values.

The physics example below calculates weight as a force in newtons given mass in kilograms and acceleration
in . Gravity on Earth is 9.8 , and gravity on Mars is 3.7 .

CHECKPOINT

Using default parameter values

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-6-keyword-arguments)

CONCEPTS IN PRACTICE

Using default parameter values

Consider the following updated version of greeting():

def greeting(msg, name="Friend", count=1):
i = 0
for i in range(0, count):

print(msg, name)

5. Which parameters have default values?
a. msg
b. name and count
c. all

6. Which function call is correct?
a. greeting()
b. greeting(name="Gina")
c. greeting("Greetings")

7. What is the output of greeting(count=0, msg="Hello")?

6.6 • Keyword arguments 169

a. Hello Friend
b. nothing
c. Error

PEP 8 RECOMMENDATIONS: SPACING

The PEP 8 style guide recommends no spaces around = when indicating keyword arguments and default
parameter values.

TRY IT

Stream donations

Write a function, donate(), that lets an online viewer send a donation to a streamer. donate() has three
parameters:

• amount: amount to donate, default value: 5
• name: donor's name, default value: "Anonymous"
• msg: donor's message, default value: ""

Given:

donate(10, "gg")

The output is:

Anonymous donated 10 credits: gg

Write function calls that use the default values along with positional and keyword arguments.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-6-keyword-arguments)

6.7 Chapter summary

Highlights from this chapter include:

• Functions are named blocks of code that perform tasks when called and make programs more organized
and optimized.

• Control flow is the sequence of program execution. Control flow moves between calling code and function
code when a function is called.

• Variable scope refers to where a variable can be accessed. Global variables can be accessed anywhere in a
program. Local variables are limited in scope, such as to a function.

• Parameters are function inputs defined with the function. Arguments are values passed to the function as

170 6 • Functions

Access for free at openstax.org

input by the calling code. Parameters are assigned with the arguments' values.
• Function calls can use positional arguments to map values to parameters in order.
• Function calls can use keyword arguments to map values using parameter names in any order.
• Functions can define default parameter values to allow for optional arguments in function calls.
• Python uses a pass-by-object-reference system to assign parameters with the object values referenced by

the arguments.
• Functions can use return statements to return values back to the calling code.

At this point, you should be able to write functions that have any number of parameters and return a value,
and programs that call functions using keyword arguments and optional arguments.

Construct Description

Function definition
def function_name():

"""Docstring"""
Function body

Parameter def function_name(parameter_1):
Function body

Argument
def function_name(parameter_1):

Function body

function_name(argument_1)

Return statement
def function_name():

Function body
return result # Returns the value of result to the caller

Variables (scope)

def function_name(parameter_1):
Function body
local_var = parameter_1 * 5
return local_var

global_var = function_name(arg_1)

Table 6.2 Chapter 6 reference.

6.7 • Chapter summary 171

Construct Description

Keyword arguments
def function_name(parameter_1, parameter_2):

Function body

function_name(parameter_2 = 5, parameter_1 = 2)

Default parameter value def function_name(parameter_1 = 100):
Function body

Table 6.2 Chapter 6 reference.

172 6 • Functions

Access for free at openstax.org

Figure 7.1 credit: modification of work "Lone Pine Sunset", by Romain Guy/Flickr, Public Domain

Chapter Outline
7.1 Module basics
7.2 Importing names
7.3 Top-level code
7.4 The help function
7.5 Finding modules
7.6 Chapter summary

Introduction
As programs get longer and more complex, organizing the code into modules is helpful. This chapter shows
how to define, import, and find new modules. Python's standard library (https://openstax.org/r/100pythlibrary)
provides over 200 built-in modules (https://openstax.org/r/100200modules). Hundreds of thousands of other
modules (https://openstax.org/r/100pypi) are available online.

A module is a .py file containing function definitions and other statements. The module's name is the file's
name without the .py extension at the end. Ex: The following code, written in a file named greetings.py,
defines a module named greetings.

"""Functions that print standard greetings."""

def hello():
print("Hello!")

def bye():
print("Goodbye!")

Modules
7

Technically, every program in this book is a module. But not every module is designed to run like a program.
Running greetings.py as a program would accomplish very little. Two functions would be defined, but the
functions would never be called. These functions are intended to be called in other modules.

7.1 Module basics

Learning objectives
By the end of this section you should be able to

• Write a module that consists only of function definitions.
• Import the module and use the functions in a program.

Defining a module
Modules are defined by putting code in a .py file. The area module below is in a file named area.py. This
module provides functions for calculating area.

EXAMPLE 7.1

The area module

"""Functions to calculate the area of geometric shapes."""

import math

2D shapes

def square(side):
"""Gets the area of a square."""
return side**2

def rectangle(length, width):
"""Gets the area of a rectangle."""
return length * width

def triangle(base, height):
"""Gets the area of a triangle."""
return 0.5 * base * height

def trapezoid(base1, base2, height):
"""Gets the area of a trapezoid."""
return 0.5 * (base1 + base2) * height

def circle(radius):
"""Gets the area of a circle."""
return math.pi * radius**2

def ellipse(major, minor):

174 7 • Modules

Access for free at openstax.org

"""Gets the area of an ellipse."""
return math.pi * major * minor

3D shapes

def cube(side):
"""Gets the surface area of a cube."""
return 6 * side**2

def cylinder(radius, height):
"""Gets the surface area of a cylinder."""
return 2 * math.pi * radius * (radius + height)

def cone(radius, height):
"""Gets the surface area of a cone."""
return math.pi * radius * (radius + math.hypot(height, radius))

def sphere(radius):
"""Gets the surface area of a sphere."""
return 4 * math.pi * radius**2

CONCEPTS IN PRACTICE

Defining a module

1. How many functions are defined in the area module?
a. 6
b. 10
c. 49

2. What would be the result of running area.py as a program?
a. Functions would be defined and ready to be called.
b. Nothing; the module has no statements to be run.
c. SyntaxError

3. What is the return value of cube(5)?
a. 60
b. 125
c. 150

Importing a module
The module defined in area.py can be used in other programs. When importing the area module, the suffix
.py is removed:

7.1 • Module basics 175

import area

print("Area of a basketball court:", area.rectangle(94, 50))
print("Area of a circus ring:", area.circle(21))

The output is:

Area of a basketball court: 4700
Area of a circus ring: 1385.4423602330987

CHECKPOINT

Importing area in a Python shell

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-1-module-basics)

CONCEPTS IN PRACTICE

Importing a module

4. What statement would import a module from a file named secret.py?
a. import secret
b. import secret.py
c. import "secret.py"

5. What code would return the area of a circle with a radius of 3 meters?
a. circle(3)
b. area.circle(3)
c. circle.area(3)

6. A programmer would like to write a function that calculates the area of a hexagon. Where should the
function be written?
a. the main program
b. the area module
c. the secret module

TRY IT

Conversion module

Write a module that defines the following functions:

1. cel2fah(c) –
Converts a temperature in Celsius to Fahrenheit.

176 7 • Modules

Access for free at openstax.org

The formula is 9/5 * c + 32.
2. fah2cel(f) –

Converts a temperature in Fahrenheit to Celsius.
The formula is 5/9 * (f - 32).

3. km2mi(km) –
Converts a distance in kilometers to miles.
The formula is km / 1.60934.

4. mi2km(mi) –
Converts a distance in miles to kilometers.
The formula is mi * 1.60934.

Each function should include a docstring as the first line. A docstring for the module has been provided for
you.

The module should not do anything except define functions. When you click the "Run" button, the module
should run without error. No output should be displayed.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-1-module-basics)

TRY IT

European vacation

Write a program that uses the conversion module from the previous exercise to complete a short story.
The program's output should match the following example (input in bold):

How fast were you driving? 180
Woah, that's like 112 mph!
What was the temperature? 35
That's 95 degrees Fahrenheit!

Notice this exercise requires two files:

1. european.py, the main program. Input and output statements are provided as a starting point. Edit the
lines with TODO comments to use the conversion module.

2. conversion.py, the other module. Copy and paste your code from the previous exercise. Import this
module in european.py after the docstring.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-1-module-basics)

7.2 Importing names

Learning objectives
By the end of this section you should be able to

• Import functions from a module using the from keyword.
• Explain how to avoid a name collision when importing a module.

7.2 • Importing names 177

The from keyword
Specific functions in a module can be imported using the from keyword:

from area import triangle, cylinder

These functions can be called directly, without referring to the module:

print(triangle(1, 2))
print(cylinder(3, 4))

EXPLORING FURTHER

As shown below, the from keyword can lead to confusing names.

CHECKPOINT

Importing functions

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-2-importing-names)

CONCEPTS IN PRACTICE

The from keyword

1. Which import statement would be needed before running print(sqrt(25))?
a. from math import sqrt
b. import sqrt from math
c. import math

2. How many variables are defined by the statement from math import sin, cos, tan?
a. 0
b. 3
c. 4

3. What error would occur if attempting to call a function that was not imported?
a. ImportError
b. NameError
c. SyntaxError

Name collisions
Modules written by different programmers might use the same name for a function. A name collision occurs
when a function is defined multiple times. If a function is defined more than once, the most recent definition is

178 7 • Modules

Access for free at openstax.org

used:

from area import cube

def cube(x): # Name collision (replaces the imported function)
return x ** 3

print(cube(2)) # Calls the local cube() function, not area.cube()

A programmer might not realize the cube function is defined twice because no error occurs when running the
program. Name collisions are not considered errors and often lead to unexpected behavior.

Care should be taken to avoid name collisions. Selecting specific functions from a module to import reduces
the memory footprint; however, importing a complete module can help to avoid collisions because a
module.name format would be used. This is a tradeoff the programmer must consider.

CHECKPOINT

Module and function names

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-2-importing-names)

CONCEPTS IN PRACTICE

Name collisions

4. A program begins with from area import square, circle. What code causes a name collision?
a. def area(phone):

"""Gets the area code of a phone number."""
b. def circle(x, y, size):

"""Draws a circle centered at (x, y)."""
c. def is_square(length, width):

"""Returns True if length and width are equal."""

5. A program begins with import area. What code causes a name collision?
a. area = 51
b. import cylinder from volume
c. def cube(size):

"""Generates a "size X size" rubik's cube."""

6. Which line will cause an error?

1 def hello():
2 print("Hello!")
3
4 def hello(name):
5 print("Hello,", name)

7.2 • Importing names 179

6
7 hello()
8 hello("Chris")

a. line 4
b. line 7
c. line 8

EXPLORING FURTHER

If a name is defined, imported, or assigned multiple times, Python uses the most recent definition. Other
languages allow multiple functions to have the same name if the parameters are different. This feature,
known as function overloading, is not part of the Python language.

TRY IT

Missing imports

Add the missing import statements to the top of the file. Do not make any changes to the rest of the code.
In the end, the program should run without errors.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-2-importing-names)

TRY IT

Party favors

The following program does not run correctly because of name collisions. Fix the program by modifying
import statements, function calls, and variable assignments. The output should be:

Bouncy ball area: 13
Bouncy ball volume: 4
Cone hat area: 227
Cone hat volume: 209

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-2-importing-names)

7.3 Top-level code

Learning objectives
By the end of this section you should be able to

180 7 • Modules

Access for free at openstax.org

• Identify code that will run as a side effect of importing.
• Explain the purpose of if __name__ == "__main__".

Side effects
Modules define functions and constants to be used in other programs. When importing a module, all code in
the module is run from top to bottom. If a module is not designed carefully, unintended code might run as a
side effect. The unintended code is generally at the top level, outside of function definitions.

CHECKPOINT

Sphere test code

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/7-3-top-
level-code)

CONCEPTS IN PRACTICE

Side effects

1. Which line would cause a side effect when imported?

1 import math
2
3 print("Defining sphere function")
4
5 def sphere(radius):
6 """Gets the volume of a sphere."""
7 return 4/3 * math.pi * radius**3

a. line 1
b. line 3
c. line 5

2. The following volume.py module causes a side effect.

import math

def sphere(radius):
"""Gets the volume of a sphere."""
return 4/3 * math.pi * radius**3

for r in range(10000000):
volume = sphere(r)

a. true
b. false

3. The following greeting.py module causes a side effect.

name = input("What is your name? ")

7.3 • Top-level code 181

print(f"Nice to meet you, {name}!")
live = input("Where do you live? ")
print(f"{live} is a great place.")

a. true
b. false

Using __name__
Python modules often include the statement if __name__ == "__main__" to prevent side effects. This
statement is true when the module is run as a program and false when the module is imported.

CHECKPOINT

The main module

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/7-3-top-
level-code)

CONCEPTS IN PRACTICE

Using __name__

4. What is the output when running the following test.py module?

import math

print(math.__name__)
print(__name__)

a. >math
test

b. __main__
test

c. math
__main__

5. What is the output when importing the following test.py module?

import math

print(math.__name__)
print(__name__)

a. math
test

b. __main__
test

182 7 • Modules

Access for free at openstax.org

c. math
__main__

6. What line is useful for preventing side effects when importing?
a. if __name__ == "main":
b. if __name__ == __main__:
c. if __name__ == "__main__":

EXPLORING FURTHER

Variables that begin and end with double underscores have special meaning in Python. Double underscores
are informally called "dunder" or "magic" variables. Other examples include __doc__ (the module's
docstring) and __file__ (the module's filename).

TRY IT

Side effects

This exercise is a continuation of the "Missing imports" exercise. Previously, you added missing import
statements to the top of the program. Now, modify the program to prevent side effects when importing the
program as a module:

1. Add if __name__ == "__main__" at the end.
2. Move all test code under that if statement.

The program should run without errors and produce the same output as before.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/7-3-top-
level-code)

TRY IT

Conversion test

This exercise is a continuation of the "Conversion module" exercise. Previously, you wrote the functions
cel2fah, fah2cel, km2mi, and mi2km. Write test code at the end of conversion.py (the original file) for
each of these functions. The test code must not run as a side effect when conversion is imported by other
programs. When running conversion.py as the main program, the test output should be:

0 C is 32 F
5 C is 41 F
10 C is 50 F
15 C is 59 F
20 C is 68 F

7.3 • Top-level code 183

20 F is -7 C
25 F is -4 C
30 F is -1 C
35 F is 2 C
40 F is 4 C

1 km is 0.6 mi
2 km is 1.2 mi
3 km is 1.9 mi
4 km is 2.5 mi
5 km is 3.1 mi

5 mi is 8.0 km
6 mi is 9.7 km
7 mi is 11.3 km
8 mi is 12.9 km
9 mi is 14.5 km

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/7-3-top-
level-code)

7.4 The help function

Learning objectives
By the end of this section you should be able to

• Use the help() function to explore a module's contents.
• Identify portions of code included in the documentation.

Colors on websites
This section introduces an example module for working with HTML colors (https://openstax.org/r/
100htmlcolors). HyperText Markup Language (HTML) is used to design websites and graphical applications.
Web browsers like Chrome and Safari read HTML and display the corresponding contents. Ex: The HTML code
<p style="color: Red">Look out!</p> represents a paragraph with red text.

HTML defines 140 standard color names (https://openstax.org/r/100colornames). Additional colors can be
specified using a hexadecimal format: #RRGGBB. The digits RR, GG, and BB represent the red, green, and blue
components of the color. Ex: #DC143C is 220 red + 20 green + 60 blue, which is the color Crimson.

Red, green, and blue values range from 0 to 255 (or 00 to FF in hexadecimal). Lower values specify darker
colors, and higher values specify lighter colors. Ex: #008000 is the color Green, and #00FF00 is the color Lime.

CHECKPOINT

HTML color codes

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/7-4-the-
help-function)

184 7 • Modules

Access for free at openstax.org

CONCEPTS IN PRACTICE

HTML color codes

1. What color is #000080?
a. maroon red
b. navy blue
c. olive green

2. What is 255 in hexadecimal?
a. 00
b. 80
c. FF

3. Which color is lighter?
a. #FFA500 (orange)
b. #008000 (green)

Example colors module
A module for working with HTML color codes would be helpful to graphic designers and web developers. The
following Python code is in a file named colors.py.

• Line 1 is the docstring for the module.
• Lines 3–16 assign variables for frequently used colors.
• Lines 18–24 define a function to be used within the module.
• Lines 26–45 define functions to be used in other modules.

Note: The tohex() and torgb() functions use Python features (string formatting and slicing) described later
in the book. For now, the documentation and comments are more important than the implementation details.

"""Functions for working with color names and hex/rgb values."""

Primary colors
RED = "#FF0000"
YELLOW = "#FFFF00"
BLUE = "#0000FF"

Secondary colors
ORANGE = "#FFA500"
GREEN = "#008000"
VIOLET = "#EE82EE"

Neutral colors
BLACK = "#000000"
GRAY = "#808080"
WHITE = "#FFFFFF"

def _tohex(value):

7.4 • The help function 185

"""Converts an integer to an 8-bit (2-digit) hexadecimal string."""
if value <= 0:

return "00"
if value >= 255:

return "FF"
return format(value, "02X")

def tohex(r, g, b):
"""Formats red, green, and blue integers as a color in hexadecimal."""
return "#" + _tohex(r) + _tohex(g) + _tohex(b)

def torgb(color):
"""Converts a color in hexadecimal to red, green, and blue integers."""
r = int(color[1:3], 16) # First 2 digits
g = int(color[3:5], 16) # Middle 2 digits
b = int(color[5:7], 16) # Last 2 digits
return r, g, b

def lighten(color):
"""Increases the red, green, and blue values of a color by 32 each."""
r, g, b = torgb(color)
return tohex(r+32, g+32, b+32)

def darken(color):
"""Decreases the red, green, and blue values of a color by 32 each."""
r, g, b = torgb(color)
return tohex(r-32, g-32, b-32)

CONCEPTS IN PRACTICE

The colors module

4. What are the components of the color YELLOW?
a. red=0, green=255, blue=255
b. red=255, green=255, blue=0
c. red=255, green=0, blue=255

5. What code would return a darker shade of blue?
a. darken(BLUE)
b. colors.darken(BLUE)
c. colors.darken(colors.BLUE)

6. What symbol indicates that a function is not intended to be called by other modules?
a. underscore (_)
b. number sign (#)
c. colon (:)

186 7 • Modules

Access for free at openstax.org

Module documentation
The built-in help() function provides a summary of a module's functions and data. Calling
help(module_name) in a shell is a convenient way to learn about a module.

EXAMPLE 7.2

Output of help(colors) in a shell

The documentation below is automatically generated from the docstrings in colors.py.

help(colors)

Help on module colors:

NAME
colors - Functions for working with color names and hex/rgb values.

FUNCTIONS
darken(color)

Decreases the red, green, and blue values of a color by 32 each.

lighten(color)
Increases the red, green, and blue values of a color by 32 each.

tohex(r, g, b)
Formats red, green, and blue integers as a color in hexadecimal.

torgb(color)
Converts a color in hexadecimal to red, green, and blue integers.

DATA
BLACK = '#000000'
BLUE = '#0000FF'
GRAY = '#808080'
GREEN = '#008000'
ORANGE = '#FFA500'
RED = '#FF0000'
VIOLET = '#EE82EE'
WHITE = '#FFFFFF'
YELLOW = '#FFFF00'

FILE
/home/student/Desktop/colors.py

>>> help(colors)

Help on module colors:

NAME

7.4 • The help function 187

colors - Functions for working with color names and hex/rgb values.

FUNCTIONS
darken(color)

Decreases the red, green, and blue values of a color by 32 each.

lighten(color)
Increases the red, green, and blue values of a color by 32 each.

tohex(r, g, b)
Formats red, green, and blue integers as a color in hexadecimal.

torgb(color)
Converts a color in hexadecimal to red, green, and blue integers.

DATA
BLACK = '#000000'
BLUE = '#0000FF'
GRAY = '#808080'
GREEN = '#008000'
ORANGE = '#FFA500'
RED = '#FF0000'
VIOLET = '#EE82EE'
WHITE = '#FFFFFF'
YELLOW = '#FFFF00'

FILE
/home/student/Desktop/colors.py

CONCEPTS IN PRACTICE

The help() function

7. The documentation includes comments from the source code.
a. true
b. false

8. In what order are the functions listed in the documentation?
a. alphabetical order
b. definition order
c. random order

9. Which function defined in colors.py is not included in the documentation?
a. _tohex
b. tohex

188 7 • Modules

Access for free at openstax.org

c. torgb

TRY IT

Help on modules

The random and statistics modules are useful for running scientific experiments. You can become
familiar with these two modules by skimming their documentation.

Open a Python shell on your computer, or use the one at python.org/shell (https://openstax.org/r/
100pythonshell). Type the following lines, one at a time, into the shell.

• import random
• help(random)
• import statistics
• help(statistics)

Many shell environments, including the one on python.org, display the output of help() one page at a
time. Use the navigation keys on the keyboard (up/down arrows, page up/down, home/end) to read the
documentation. When you are finished reading, press the Q key ("quit") to return to the Python shell.

TRY IT

Help on functions

The help() function can be called on specific functions in a module. Open a Python shell on your
computer, or use the one at python.org/shell (https://openstax.org/r/100pythonshell). Type the following
lines, one at a time, into the shell.

• import random
• help(random.randint)
• help(random.choice)
• import statistics
• help(statistics.median)
• help(statistics.mode)

Remember to use the navigation keys on the keyboard, and press the Q key ("quit") to return to the Python
shell.

7.5 Finding modules

Learning objectives
By the end of this section you should be able to

• Explain differences between the standard library and PyPI.
• Search python.org and pypi.org for modules of interest.

7.5 • Finding modules 189

Built-in modules
The Python Standard Library is a collection of built-in functions and modules that support common
programming tasks. Ex: The math module provides functions like sqrt() and constants like pi. Python's
official documentation includes a library reference (https://openstax.org/r/100pythlibrary) and a module index
(https://openstax.org/r/100200modules) for becoming familiar with the standard library.

For decades, Python has maintained a "batteries included (https://openstax.org/r/100batteries)" philosophy.
This philosophy means that the standard library should come with everything most programmers need. In
fact, the standard library includes over 200 built-in modules!

Module Description

calendar General calendar-related functions.

datetime Basic date and time types and functions.

email Generate and process email messages.

math Mathematical functions and constants.

os Interact with the operating system.

random Generate pseudo-random numbers.

statistics Mathematical statistics functions.

sys System-specific parameters and functions.

turtle Educational framework for simple graphics.

zipfile Read and write ZIP-format archive files.

Table 7.1 Example built-in modules in the standard library.

CONCEPTS IN PRACTICE

Built-in modules

Use the library reference, module index, and documentation links above to answer the questions.

1. Which page provides a list of built-in modules sorted by category?
a. library reference
b. module index
c. PEP 2

190 7 • Modules

Access for free at openstax.org

2. What is the value of calendar.SUNDAY?
a. 1
b. 6
c. 7

3. Which built-in module enables the development of graphical user interfaces?
a. tkinter
b. turtle
c. webbrowser

Third-party modules
The Python Package Index (PyPI), available at pypi.org (https://openstax.org/r/100pypi), is the official third-
party software library for Python. The abbreviation "PyPI" is pronounced like pie pea eye (in contrast to PyPy
(https://openstax.org/r/100pypy), a different project).

PyPI allows anyone to develop and share modules with the Python community. Module authors include
individuals, large companies, and non-profit organizations. PyPI helps programmers install modules and
receive updates.

Most software available on PyPI is free and open source. PyPI is supported by the Python Software Foundation
(https://openstax.org/r/100foundation) and is maintained by an independent group of developers.

Module Description

arrow Convert and format dates, times, and timestamps.

BeautifulSoup Extract data from HTML and XML documents.

bokeh Interactive plots and applications in the browser.

matplotlib Static, animated, and interactive visualizations.

moviepy Video editing, compositing, and processing.

nltk Natural language toolkit for human languages.

numpy Fundamental package for numerical computing.

pandas Data analysis, time series, and statistics library.

pillow Image processing for jpg, png, and other formats.

Table 7.2 Example third-party modules available from PyPI.

7.5 • Finding modules 191

Module Description

pytest Full-featured testing tool and unit test framework.

requests Elegant HTTP library for connecting to web servers.

scikit-learn Simple, efficient tools for predictive data analysis.

scipy Fundamental algorithms for scientific computing.

scrapy Crawl websites and scrape data from web pages.

tensorflow End-to-end machine learning platform for everyone.

Table 7.2 Example third-party modules available from PyPI.

CONCEPTS IN PRACTICE

Third-party modules

Use pypi.org and the links in the table above to answer the questions.

4. Which modules can be used to edit pictures and videos?
a. BeautifulSoup and Scrapy
b. Bokeh and Matplotlib
c. MoviePy and Pillow

5. Which third-party module is a replacement for the built-in datetime module?
a. arrow
b. calendar
c. time

6. Search for the webcolors module on PyPI. What function provided by webcolors looks up the color
name for a hex code?
a. hex_to_name
b. name_to_hex
c. normalize_hex

EXPLORING FURTHER

Programming blogs often highlight PyPI modules to demonstrate the usefulness of Python. The following
examples provide more background information about the modules listed above.

• Top 20 Python Libraries for Data Science for 2023 (https://openstax.org/r/100simplelearn)
• 24 Best Python Libraries You Should Check in 2022 (https://openstax.org/r/100library2022)

192 7 • Modules

Access for free at openstax.org

• Most Popular Python Packages in 2021 (https://openstax.org/r/100packages2021)

TRY IT

Happy birthday

Module documentation pages often include examples to help programmers become familiar with the
module. For this exercise, refer to the following examples from the datetime module documentation:

• Examples of Usage: date (https://openstax.org/r/100dateexamples)
• Examples of Usage: timedelta (https://openstax.org/r/100timedeltaex)

Write a program that creates a date object representing your birthday. Then get a date object
representing today's date (the date the program is run). Calculate the difference between the two dates,
and output the results in the following format:

Your birth date: 2005-03-14
Today's date is: 2023-06-01

You were born 6653 days ago
(that is 574819200 seconds)

You are about 18 years old

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-5-finding-modules)

TRY IT

More exact age

The datetime module does not provide a built-in way to display a person's exact age. Ex: The following
program calculates an exact age (in years and days) using floor division and modulo. The output is: You
are 15 years and 4 days old.

from datetime import date

birth = date(2005, 3, 14)
today = date(2020, 3, 14) # 15 years later
delta = today - birth

years = delta.days // 365
days = delta.days % 365
print("You are", years, "years and", days, "days old")

7.5 • Finding modules 193

Notice how leap years are included in the calculation. February 29th occurs four times between birth and
today. Therefore, the user is not only 15 years old, but 15 years and 4 days old.

Many commonly used modules from PyPI, including arrow, are installed in the Python shell at python.org/
shell (https://openstax.org/r/100pythonshell). Open the Python shell and type the following lines:

import arrow
birth = arrow.get(2005, 3, 14)
birth.humanize()

Refer to the humanize() (https://openstax.org/r/100humanize) examples from the arrow module
documentation. In the Python shell, figure out how to display the number of years and days since birth
using one line of code. Then display the number of years, months, and days since birth. Finally, use the
print() function to output the results in this format: You are 18 years 4 months and 7 days old.

As time permits, experiment with other functions provided by the arrow module.

7.6 Chapter summary

Highlights from this chapter include:

• Programs can be organized into multiple .py files (modules). The import keyword allows a program to use
functions defined in another .py file.

• The from keyword can be used to import specific functions from a module. However, programs should
avoid importing (or defining) multiple functions with the same name.

• Modules often include the line if __name__ == "__main__" to prevent code from running as a side
effect when the module is imported by other programs.

• When working in a shell, the help() function can be used to look up the documentation for a module.
The documentation is generated from the docstrings.

• Python comes with over 200 built-in modules and hundreds of thousands of third-party modules.
Programmers can search for modules on docs.python.org (https://openstax.org/r/100docstrings) and
pypi.org (https://openstax.org/r/100pypi).

Statement Description

import module Imports a module for use in another program.

from module import
function Imports a specific function from a module.

if __name__ ==
"__main__":

A line of code found at the end of many modules. This statement indicates what
code to run if the module is executed as a program (in other words, what code
not to run if this module is imported by another program).

Table 7.3 Chapter 7 reference.

194 7 • Modules

Access for free at openstax.org

Statement Description

help(module_name)

Shows the documentation for the given module. The documentation includes
the module's docstring, followed by a list of functions defined in the module,
followed by a list of global variables assigned in the module, followed by the
module's file name.

help(function_name) Shows the docstring for the given function.

date(2023, 2, 14)
Creates a date object representing February 14, 2023.
Requires: from datetime import date.

Table 7.3 Chapter 7 reference.

7.6 • Chapter summary 195

196 7 • Modules

Access for free at openstax.org

Figure 8.1 credit: modification of work "Project 366 #65: 050316 A Night On The Tiles", by Pete/Flickr, CC BY 2.0

Chapter Outline
8.1 String operations
8.2 String slicing
8.3 Searching/testing strings
8.4 String formatting
8.5 Splitting/joining strings
8.6 Chapter summary

Introduction
A string is a sequence of characters. Python provides useful methods for processing string values. In this
chapter, string methods will be demonstrated including comparing string values, string slicing, searching,
testing, formatting, and modifying.

8.1 String operations

Learning objectives
By the end of this section you should be able to

• Compare strings using logical and membership operators.
• Use lower() and upper() string methods to convert string values to lowercase and uppercase

characters.

String comparison
String values can be compared using logical operators (<, <=, >, >=, ==, !=) and membership operators (in and
not in). When comparing two string values, the matching characters in two string values are compared
sequentially until a decision is reached. For comparing two characters, ASCII values are used to apply logical
operators.

Strings
8

Operator Description Example Output Explanation

> or >=

Checks whether the
first string value is
greater than (or greater
than or equal to) the
second string value.

"c" >
"d"

False

When comparing "c" operand to "d"
operand, the ASCII value for "c" is smaller
than the ASCII value for "d". Therefore, "c"
< "d". The expression "c" > "d"
evaluates to False.

< or <=

Checks whether the
first string value is less
than (or less than or
equal to) the second
string value.

"ab" <
"ac"

True

When comparing "ab" operand to "ac"
operand, the first characters are the same,
but the second character of "ab" is less
than the second character in "ac" and as
such "ab" < "ac".

== Checks whether two
string values are equal.

"aa" ==
"aa"

True
Since all characters in the first operand and
the second operand are the same, the two
string values are equal.

!=
Checks whether two
string values are not
equal.

"a" !=
"b"

True

The two operands contain different string
values ("a" vs. "b"), and the result of
checking whether the two are not the same
evaluates to True.

in

Checks whether the
second operand
contains the first
operand.

"a" in
"bc"

False
Since string "bc" does not contain string
"a", the output of "a" in "bc" evaluates
to False.

not in

Checks whether the
second operand does
not contain the first
operand.

"a" not
in "bc"

True
Since string "bc" does not contain string
"a", the output of "a" not in "bc"
evaluates to True.

Table 8.1 Comparing string values.

CONCEPTS IN PRACTICE

Using logical and membership operators to compare string values

1. What is the output of ("aaa" < "aab")?
a. True
b. False

2. What is the output of ("aa" < "a")?
a. True
b. False

198 8 • Strings

Access for free at openstax.org

3. What is the output of ("aples" in "apples")?
a. undefined
b. True
c. False

lower() and upper()
Python has many useful methods for modifying strings, two of which are lower() and upper() methods. The
lower() method returns the converted alphabetical characters to lowercase, and the upper() method returns
the converted alphabetical characters to uppercase. Both the lower() and upper() methods do not modify
the string.

EXAMPLE 8.1

Converting characters in a string

In the example below, the lower() and upper() string methods are called on the string variable x to
convert all characters to lowercase and uppercase, respectively.

x = "Apples"

The lower() method converts a string to all lowercase characters
print(x.lower())

The upper() method converts a string to all uppercase characters
print(x.upper())

The above code's output is:

apples
APPLES

CONCEPTS IN PRACTICE

Using lower() and upper()

4. What is the output of "aBbA".lower()?
a. abba
b. ABBA
c. abbA

5. What is the output of "aBbA".upper()?
a. abba

8.1 • String operations 199

b. ABBA
c. ABbA
d. aBBA

6. What is the output of ("a".upper() == "A")?
a. True
b. False

TRY IT

Number of characters in the string

A string variable, s_input, is defined. Use lower() and upper() to convert the string to lowercase and
uppercase, and print the results in the output. Also, print the number of characters in the string, including
space characters.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-1-string-operations)

TRY IT

What is my character?

Given the string, s_input, which is a one-character string object, if the character is between "a" and "t"
or "A" and "T", print True. Otherwise, print False.
Hint: You can convert s_input to lowercase and check if s_input is between "a" and "t".

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-1-string-operations)

8.2 String slicing

Learning objectives
By the end of this section you should be able to

• Use string indexing to access characters in the string.
• Use string slicing to get a substring from a string.
• Identify immutability characteristics of strings.

String indexing
A string is a type of sequence. A string is made up of a sequence of characters indexed from left to right,
starting at 0. For a string variable s, the left-most character is indexed 0 and the right-most character is
indexed len(s) - 1. Ex: The length of the string "Cloud" is 5, so the last index is 4.

Negative indexing can also be used to refer to characters from right to left starting at -1. For a string variable
s, the left-most character is indexed -len(s) and the right-most character is indexed -1. Ex: The length of the
string "flower" is 6, so the index of the first character with negative indexing is -6.

200 8 • Strings

Access for free at openstax.org

CHECKPOINT

String indexing

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-2-string-slicing)

CONCEPTS IN PRACTICE

Accessing characters in a string using indexing

1. Which character is at index 1 in the string "hello"?
a. "h"
b. "e"
c. "o"

2. What is the character at index -2 in the string "Blue"?
a. "e"
b. "u"
c. "l"

3. What is the output of the following code?

word = "chance"
print(word[-1] == word[5])

a. True
b. False

String slicing
String slicing is used when a programmer must get access to a sequence of characters. Here, a string slicing
operator can be used. When [a:b] is used with the name of a string variable, a sequence of characters
starting from index a (inclusive) up to index b (exclusive) is returned. Both a and b are optional. If a or b are not
provided, the default values are 0 and len(string), respectively.

EXAMPLE 8.2

Getting the minutes

Consider a time value is given as "hh:mm" with "hh" representing the hour and "mm" representing the
minutes. To retrieve only the string's minutes portion, the following code can be used:

time_string = "13:46"
minutes = time_string[3:5]
print(minutes)

8.2 • String slicing 201

The above code's output is:

46

EXAMPLE 8.3

Getting the hour

Consider a time value is given as "hh:mm" with "hh" representing the hour and "mm" representing the
minutes. To retrieve only the string's hour portion, the following code can be used:

time_string = "14:50"
hour = time_string[:2]
print(hour)

The above code's output is:

14

CONCEPTS IN PRACTICE

Getting a substring using string slicing

4. What is the output of the following code?

a_string = "Hello world"
print(a_string[2:4])

a. "el"
b. "ll"
c. "llo"

5. What is the output of the following code?

location = "classroom"
print(location[-3:-1])

a. "ro"
b. "oo"
c. "oom"

6. What is the output of the following code?

202 8 • Strings

Access for free at openstax.org

greeting = "hi Leila"
name = greeting[3:]

a. " Leila"
b. "Leila"
c. "ila"

String immutability
String objects are immutable meaning that string objects cannot be modified or changed once created. Once
a string object is created, the string's contents cannot be altered by directly modifying individual characters or
elements within the string. Instead, to make changes to a string, a new string object with the desired changes
is created, leaving the original string unchanged.

CHECKPOINT

Strings are immutable

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-2-string-slicing)

CONCEPTS IN PRACTICE

Modifying string content

7. What is the correct way of replacing the first character in a string to character "*" in a new string?
a. x = "string"

x[0] = "*"
b. x = "string"

x = "*" + x[1:]
c. x = "string"

x = "*" + x

8. What type of error will result from the following code?

string_variable = "example"
string_variable[-1] = ""

a. TypeError
b. IndexError
c. NameError

9. What is the output of the following code?

str = "morning"
str = str[1]
print(str)

8.2 • String slicing 203

a. TypeError
b. m
c. o

TRY IT

Changing the greeting message

Given the string "Hello my fellow classmates" containing a greeting message, print the first word by
getting the beginning of the string up to (and including) the 5th character. Change the first word in the
string to "Hi" instead of "hello" and print the greeting message again.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-2-string-slicing)

TRY IT

Editing the string at specified locations

Given a string variable, string_variable, and a list of indexes, remove characters at the specified indexes
and print the resulting string.

Input:
string_variable = "great"
indices = [0, 1]

prints eat

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-2-string-slicing)

8.3 Searching/testing strings

Learning objectives
By the end of this section you should be able to

• Use the in operator to identify whether a given string contains a substring.
• Call the count() method to count the number of substrings in a given string.
• Search a string to find a substring using the find() method.
• Use the index() method to find the index of the first occurrence of a substring in a given string.
• Write a for loop on strings using in operator.

204 8 • Strings

Access for free at openstax.org

in operator
The in Boolean operator can be used to check if a string contains another string. in returns True if the first
string exists in the second string, False otherwise.

CHECKPOINT

What is in the phrase?

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-3-searchingtesting-strings)

CONCEPTS IN PRACTICE

Using in operator to find substrings

1. What is the output of ("a" in "an umbrella")?
a. 2
b. False
c. True
d. 1

2. What is the output of ("ab" in "arbitrary")?
a. True
b. False

3. What is the output of ("" in "string")?
a. True
b. False

For loop using in operator
The in operator can be used to iterate over characters in a string using a for loop. In each for loop iteration,
one character is read and will be the loop variable for that iteration.

CHECKPOINT

for loop using in operator

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-3-searchingtesting-strings)

CONCEPTS IN PRACTICE

Using in operator within for loop

4. What is the output of the following code?

8.3 • Searching/testing strings 205

for c in "string":
print(c, end = "")

a. string
b. s

t
r
i
n
g

c. s t r i n g

5. What is the output of the following code?

count = 0
for c in "abca":

if c == "a":
count += 1

print(count)

a. 0
b. 1
c. 2

6. What is the output of the following code?

word = "cab"
for i in word:

if i == "a":
print("A", end = "")

if i == "b":
print("B", end = "")

if i == "c":
print("C", end = "")

a. cab
b. abc
c. CAB
d. ABC

count()
The count() method counts the number of occurrences of a substring in a given string. If the given substring
does not exist in the given string, the value 0 is returned.

206 8 • Strings

Access for free at openstax.org

CHECKPOINT

Counting the number of occurrences of a substring

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-3-searchingtesting-strings)

CONCEPTS IN PRACTICE

Using count() to count the number of substrings

7. What is the output of (aaa".count("a"))?
a. True
b. 1
c. 3

8. What is the output of ("weather".count("b"))?
a. 0
b. -1
c. False

9. What is the output of ("aaa".count("aa"))?
a. 1
b. 2
c. 3

find()
The find() method returns the index of the first occurrence of a substring in a given string. If the substring
does not exist in the given string, the value of -1 is returned.

CHECKPOINT

Finding the first index of a substring

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-3-searchingtesting-strings)

CONCEPTS IN PRACTICE

Using find() to locate a substring

10. What is the output of "banana".find("a")?
a. 1
b. 3
c. 5

11. What is the output of "banana".find("c")?

8.3 • Searching/testing strings 207

a. 0
b. -1
c. ValueError

12. What is the output of "b".find("banana")?
a. -1
b. 0
c. ValueError

index()
The index() method performs similarly to the find() method in which the method returns the index of the
first occurrence of a substring in a given string. The index() method assumes that the substring exists in the
given string; otherwise, throws a ValueError.

EXAMPLE 8.4

Getting the time's minute portion

Consider a time value is given as part of a string using the format of "hh:mm" with "hh" representing the
hour and "mm" representing the minutes. To retrieve only the string's minute portion, the following code
can be used:

time_string = "The time is 12:50"
index = time_string.index(":")
print(time_string[index+1:index+3])

The above code's output is:

50

CONCEPTS IN PRACTICE

Using index() to locate a substring

13. What is the output of "school".index("o")?
a. 3
b. 4
c. -3

14. What is the output of "school".index("ooo")?
a. 3
b. 4

208 8 • Strings

Access for free at openstax.org

c. ValueError

15. What is the output of the following code?

sentence = "This is a sentence"
index = sentence.index(" ")
print(sentence[:index])

a. "This"
b. "This "
c. "sentence"

TRY IT

Finding all spaces

Write a program that, given a string, counts the number of space characters in the string. Also, print the
given string with all spaces removed.

Input: "This is great"

prints:
2
Thisisgreat

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-3-searchingtesting-strings)

8.4 String formatting

Learning objectives
By the end of this section you should be able to

• Format a string template using input arguments.
• Use format() to generate numerical formats based on a given template.

String format specification
Python provides string substitutions syntax for formatting strings with input arguments. Formatting string
includes specifying string pattern rules and modifying the string according to the formatting specification.
Examples of formatting strings include using patterns for building different string values and specifying
modification rules for the string's length and alignment.

String formatting with replacement fields
Replacement fields are used to define a pattern for creating multiple string values that comply with a given

8.4 • String formatting 209

format. The example below shows two string values that use the same template for making requests to
different individuals for taking different courses.

EXAMPLE 8.5

String values from the same template

Dear John, I'd like to take a programming course with Prof. Potter.

Dear Kishwar, I'd like to take a math course with Prof. Robinson.

In the example above, replacement fields are 1) the name of the individual the request is being made to, 2)
title of the course, and 3) the name of the instructor. To create a template, replacement fields can be added
with {} to show a placeholder for user input. The format() method is used to pass inputs for replacement
fields in a string template.

EXAMPLE 8.6

String template formatting for course enrollment requests

A string template with replacement fields is defined below to create string values with different input
arguments. The format() method is used to pass inputs to the template in the same order.

s = "Dear {}, I'd like to take a {} course with Prof. {}."

print(s)
print(s.format("John", "programming", "Potter"))
print(s.format("Kishwar", "math", "Robinson"))

The above code's output is:

Dear {}, I'd like to take a {} course with Prof. {}.
Dear John, I'd like to take a programming course with Prof. Potter.
Dear Kishwar, I'd like to take a math course with Prof. Robinson.

CONCEPTS IN PRACTICE

String template and formatting

1. What is the output of print("Hello {}!".format("Ana"))?
a. Ana

210 8 • Strings

Access for free at openstax.org

b. Hello Ana
c. Hello Ana!

2. What is the output of print("{}:{}".format("One", "1"))?
a. One1
b. One:1
c. 1:One

3. What is the output of print("{}".format("one", "two", "three"))?
a. one
b. two
c. onetwothree

Named replacement fields
Replacement fields can be tagged with a label, called named replacement fields, for ease of access and code
readability. The example below illustrates how named replacement fields can be used in string templates.

EXAMPLE 8.7

Season weather template using named replacement fields

A named replacement argument is a convenient way of assigning name tags to replacement fields and
passing values associated with replacement fields using corresponding names (instead of passing values in
order).

s = "Weather in {season} is {temperature}."

print(s)
print(s.format(season = "summer", temperature = "hot"))
print(s.format(season = "winter", temperature = "cold"))

The above code's output is:

Weather in {season} is {temperature}.
Weather in summer is hot.
Weather in winter is cold.

MULTIPLE USE OF A NAMED ARGUMENT

Since named replacement fields are referred to using a name key, a named replacement field can appear
and be used more than once in the template. Also, positional ordering is not necessary when named
replacement fields are used.

8.4 • String formatting 211

s = "Weather in {season} is {temperature}; very very {temperature}."

print(s)
print(s.format(season = "summer", temperature = "hot"))
print(s.format(temperature = "cold", season = "winter"))

The above code's output is:

Weather in {season} is {temperature}; very very {temperature}.
Weather in summer is hot; very very hot.
Weather in winter is cold; very very cold.

CONCEPTS IN PRACTICE

Named replacement field examples

4. What is the output of print("Hey {name}!".format(name = "Bengio"))?
a. Hey name!
b. Hey Bengio
c. Hey Bengio!

5. What is the output of print("Hey {name}!".format("Bengio"))?
a. Hey name!
b. KeyError
c. Hey Bengio!

6. What is the output of the following code?

greeting = "Hi"
name = "Jess"
print("{greeting} {name}".format(greeting = greeting, name = name))

a. greeting name
b. Hi Jess
c. Jess Hi

Numbered replacement fields
Python's string format() method can use positional ordering to match the numbered arguments. The
replacement fields that use the positional ordering of arguments are called numbered replacement fields.
The indexing of the arguments starts from 0. Ex: print("{1}{0}".format("Home", "Welcome")) outputs
the string value "Welcome Home" as the first argument. "Home" is at index 0, and the second argument,
"Welcome", is at index 1. Replacing these arguments in the order of "{1}{0}" creates the string "Welcome

212 8 • Strings

Access for free at openstax.org

Home".

Numbered replacement fields can use argument's values for multiple replacement fields by using the same
argument index. The example below illustrates how an argument is used for more than one numbered
replacement field.

EXAMPLE 8.8

Numbered replacement field to build a phrase

Numbered replacement fields are used in this example to build phrases like "very very cold" or "very
hot".

template1 = "{0} {0} {1}"
template2 = "{0} {1}"

print(template1.format("very", "cold"))
print(template2.format("very", "hot"))

The above code's output is:

very very cold
very hot

String length and alignment formatting
Formatting the string length may be needed for standardizing the output style when multiple string values of
the same context are being created and printed. The example below shows a use case of string formatting in
printing a table with minimum-length columns and specific alignment.

EXAMPLE 8.9

A formatted table of a class roster

A formatted table of a class roster

Student Name Major Grade
--
Manoj Sara Computer Science A-
Gabriel Wang Electrical Engineering A
Alex Narayanan Social Sciences A+

In the example above, the table is formatted into three columns. The first column takes up 15 characters and is
left-aligned. The second column uses 25 characters and is center-aligned, and the last column uses two
characters and is right aligned. Alignment and length format specifications controls are used to create the

8.4 • String formatting 213

formatted table.

The field width in string format specification is used to specify the minimum length of the given string. If the
string is shorter than the given minimum length, the string will be padded by space characters. A field width
is included in the format specification field using an integer after a colon. Ex: {name:15} specifies that the
minimum length of the string values that are passed to the name field is 15.

Since the field width can be used to specify the minimum length of a string, the string can be padded with
space characters from right, left, or both to be left-aligned, right-aligned, and centered, respectively. The
string alignment type is specified using <, >, or ^characters after the colon when field length is specified. Ex:
{name:^20} specifies a named replacement field with the minimum length of 20 characters that is center-
aligned.

Alignment
Type

Symbol Example Output

Left-
aligned

<

template = "{hex:<7}{name:<10}"
print(template.format(hex = "#FF0000",
name = "Red")) print(template.format(hex
= "#00FF00", name = "green"))

#FF0000Red
#00FF00green

Right-
aligned

>

template = "{hex:>7}{name:>10}"
print(template.format(hex = "#FF0000",
name = "Red")) print(template.format(hex
= "#00FF00", name = "green"))

#FF0000 Red
#00FF00 green

Centered ^

template = "{hex:^7}{name:^10}"
print(template.format(hex = "#FF0000",
name = "Red")) print(template.format(hex
= "#00FF00", name = "green"))

#FF0000 Red
#00FF00 green

Table 8.2 String alignment formatting.

CONCEPTS IN PRACTICE

Specifying field width and alignment

7. What is the output of the following code?

template = "{name:12}"
formatted_name = template.format(name = "Alice")
print(len(formatted_name))

a. 5
b. 12
c. "Alice"

8. What is the output of the following code?

214 8 • Strings

Access for free at openstax.org

template = "{greeting:>6}"
formatted_greeting = template.format(greeting = "Hello")
print(formatted_greeting[0])

a. H
b. " Hello"
c. Space character

9. What is the output of the following code?

template = "{:5}"
print(template.format("123456789"))

a. 56789
b. 123456
c. 123456789

Formatting numbers
The format() method can be used to format numerical values. Numerical values can be padded to have a
given minimum length, precision, and sign character. The syntax for modifying numeric values follows the
{[index]:[width][.precision][type]} structure. In the given syntax,

• The index field refers to the index of the argument.
• The width field refers to the minimum length of the string.
• The precision field refers to the floating-point precision of the given number.
• The type field shows the type of the input that is passed to the format() method. Floating-point and

decimal inputs are identified by "f" and "d", respectively. String values are also identified by "s".

The table below summarizes formatting options for modifying numeric values.

Example Output Explanation

print("{:.7f}".format(0.9795)) 0.9795000

The format specification .7 shows the output
must have seven decimal places. The f
specification is an identifier of floating-point
formatting.

print("{:.3f}".format(12)) 12.000

The format specification .3 shows the output
must have three decimal places. The f
specification is an identifier of floating-point
formatting.

Table 8.3 Numerical formatting options.

8.4 • String formatting 215

Example Output Explanation

print("{:+.2f}".format(4)) +4.00

The format specification .2 shows the output
must have two decimal places. The f specification
is an identifier of floating-point formatting. The +
sign before the precision specification adds a sign
character to the output.

print("{:0>5d}".format(5)) 00005

The format specification 0>5 defines the width
field as 5, and thus the output must have a
minimum length of 5. And, if the number has
fewer than five digits, the number must be
padded with 0's from the left side. The d
specification is an identifier of a decimal number
formatting.

print("{:.3s}".format("12.50")) 12.
The format specification .3 shows the output will
have three characters. The s specification is an
identifier of string formatting.

Table 8.3 Numerical formatting options.

CONCEPTS IN PRACTICE

Numeric value formatting examples

10. What is the output of print('{0:.3f}'.format(3.141592))?
a. 3.141592
b. 3.1
c. 3.142

11. What is the output of print('{:1>3d}'.format(3))?
a. 113
b. 311
c. 3.000

12. What is the output of print('{:+d}'.format(123))?
a. 123
b. +123
c. :+123

216 8 • Strings

Access for free at openstax.org

TRY IT

Formatting a list of numbers

Given a list of numbers (floating-point or integer), print numbers with two decimal place precision and at
least six characters.

Input: [12.5, 2]

Prints: 012.50

002:00

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-4-string-formatting)

8.5 Splitting/joining strings

Learning objectives
By the end of this section you should be able to

• Use the split() method to split a string into substrings.
• Combine objects in a list into a string using join() method.

split()
A string in Python can be broken into substrings given a delimiter. A delimiter is also referred to as a
separator. The split() method, when applied to a string, splits the string into substrings by using the given
argument as a delimiter. Ex: "1-2".split('-') returns a list of substrings ["1", "2"]. When no arguments
are given to the split() method, blank space characters are used as delimiters. Ex: "1\t2\n3 4".split()
returns ["1", "2", "3", "4"].

CHECKPOINT

split() for breaking down the string into tokens

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-5-splittingjoining-strings)

CONCEPTS IN PRACTICE

Examples of string delimiters and split() method

1. What is the output of print("1*2*3*".split('*'))?
a. ["1", "*", "2", "*", "3", "*"]

8.5 • Splitting/joining strings 217

b. ["1", "2', "3"]
c. [1, 2, 3]

2. What is the output of print("a year includes 12 months".split())?
a. ["a year includes 12 months"]
b. ["a", "year", "includes", 12, "months"]
c. ["a", "year", "includes", "12", "months"]

3. What is the output of the following code?

s = """This is a test"""

out = s.split()
print(out)

a. Error
b. ['This', 'is', 'a', 'test']
c. >['This', 'is a', 'test']

join()
The join() method is the inverse of the split() method: a list of string values are concatenated together to
form one output string. When joining string elements in the list, the delimiter is added in-between elements.
Ex: ','.join(["this", "is", "great"]) returns "this,is,great".

CHECKPOINT

join() for combining tokens into one string

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-5-splittingjoining-strings)

CONCEPTS IN PRACTICE

Applying join() method on list of string values

4. What is the output of the following code?

elements = ['A', 'beautiful', 'day', 'for', 'learning']

print(",".join(elements))

a. 'A beautiful day for learning'
b. ['A, beautiful, day, for, learning']
c. 'A,beautiful,day,for,learning'

5. What is the length of the string "sss".join(["1","2"])?
a. 2

218 8 • Strings

Access for free at openstax.org

b. 5
c. 8

6. What is the value stored in the variable out?

s = ["1", "2"]
out = "".join(s)

a. 12
b. "12"
c. "1 2"

TRY IT

Unique and comma-separated words

Write a program that accepts a comma-separated sequence of words as input, and prints words in separate
lines. Ex: Given the string "happy,smiling,face", the output would be:

happy
smiling
face

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-5-splittingjoining-strings)

TRY IT

Lunch order

Use the join() method to repeat back a user's order at a restaurant, separated by commas. The user will
input each food item on a separate line. When finished ordering, the user will enter a blank line. The output
depends on how many items the user orders:

• If the user inputs nothing, the program outputs:
You ordered nothing.

• If the user inputs one item (Ex: eggs), the program outputs:
You ordered eggs.

• If the user inputs two items (Ex: eggs, ham), the program outputs:
You ordered eggs and ham.

• If the user inputs three or more items (Ex: eggs, ham, toast), the program outputs:
You ordered eggs, ham, and toast.

In the general case with three or more items, each item should be separated by a comma and a space. The
word "and" should be added before the last item.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/

8.5 • Splitting/joining strings 219

8-5-splittingjoining-strings)

8.6 Chapter summary

Highlights from this chapter include:

• A string is a sequence of characters.
• Logical operators can be used to compare two string values. String comparison is done by comparing

corresponding ASCII values of characters in the order of appearance in the string.
• String indexing is used to access a character or a sequence of characters in the string.
• String objects are immutable.
• String splicing.

At this point, you should be able to write programs dealing with string values.

Method Description

len() Returns the string length.

upper() Returns uppercase characters.

lower() Returns lowercase characters.

count() Returns the number of a given substring in a string.

find() Returns the index of the first occurrence of a given substring in a string. If the substring
does not exist in the string, -1 is returned.

index()
Returns the index of the first occurrence of a given substring in a string. If the substring
does not exist in the string, a ValueError is returned.

format() Used to create strings with specified patterns using arguments.

join() Takes a list of string values and combines string values into one string by placing a given
separator between values.

split() Separates a string into tokens based on a given separator string. If no separator string is
provided, blank space characters are used as separators.

Operator Description

Table 8.4 Chapter 8 reference.

220 8 • Strings

Access for free at openstax.org

Method Description

in Checks if a substring exists in a string.

in operator in
a for loop

for character in string:
loop body

Table 8.4 Chapter 8 reference.

8.6 • Chapter summary 221

222 8 • Strings

Access for free at openstax.org

Figure 9.1 credit: modification of work "Budget and Bills" by Alabama Extension/Flickr, Public Domain

Chapter Outline
9.1 Modifying and iterating lists
9.2 Sorting and reversing lists
9.3 Common list operations
9.4 Nested lists
9.5 List comprehensions
9.6 Chapter summary

Introduction
Programmers often work on collections of data. Lists are a useful way of collecting data elements. Python lists
are extremely flexible, and, unlike strings, a list's contents can be changed.

The Objects chapter introduced lists. This chapter explores operations that can be performed on lists.

9.1 Modifying and iterating lists

Learning objectives
By the end of this section you should be able to

• Modify a list using append(), remove(), and pop() list operations.
• Search a list using a for loop.

Using list operations to modify a list
An append() operation is used to add an element to the end of a list. In programming, append means add to
the end. A remove() operation removes the specified element from a list. A pop() operation removes the last
item of a list.

Lists
9

EXAMPLE 9.1

Simple operations to modify a list

The code below demonstrates simple operations for modifying a list.

Line 8 shows the append() operation, line 12 shows the remove() operation, and line 17 shows the pop()
operation. Since the pop() operation removes the last element, no parameter is needed.

1 """Operations for adding and removing elements from a list."""
2
3 # Create a list of students working on a project
4 student_list = ["Jamie", "Vicky", "DeShawn", "Tae"]
5 print(student_list)
6
7 # Another student joins the project. The student must be added

to the list.
8 student_list.append("Ming")
9 print(student_list)

10
11 # "Jamie" withdraws from the project. Jamie must be removed

from the list.
12 student_list.remove("Jamie")
13 print(student_list)
14
15 # Suppose "Ming" had to be removed from the list.
16 # A pop() operation can be used since Ming is last in the

list.
17 student_list.pop()
18 print(student_list)

The above code's output is:

['Jamie', 'Vicky', 'DeShawn', 'Tae']
['Jamie', 'Vicky', 'DeShawn', 'Tae', 'Ming']
['Vicky', 'DeShawn', 'Tae', 'Ming']
['Vicky', 'DeShawn', 'Tae']

CONCEPTS IN PRACTICE

Modifying lists

1. Which operation can be used to add an element to the end of a list?
a. add()
b. append()
c. pop()

224 9 • Lists

Access for free at openstax.org

2. What is the correct syntax to remove the element 23 from a list called number_list?
a. remove()
b. number_list.remove()
c. number_list.remove(23)

3. Which operation can be used to remove an element from the end of a list?
a. only pop()
b. only remove()
c. either pop() or remove()

Iterating lists
An iterative for loop can be used to iterate through a list. Alternatively, lists can be iterated using list indexes
with a counting for loop. The animation below shows both ways of iterating a list.

CHECKPOINT

Using len() to get the length of a list

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-1-modifying-and-iterating-lists)

CONCEPTS IN PRACTICE

Iterating lists

For the following questions, consider the list:

my_list = [2, 3, 5, 7, 9]

4. How many times will the following for loop execute?
for element in my_list:
a. 5
b. 4

5. What is the final value of i for the following counting for loop?
for i in range(0, len(my_list)):
a. 9
b. 4
c. 5

6. What is the output of the code below?

for i in range(0, len(my_list), 2):
print(my_list[i], end=' ')

a. 2 5 9
b. 2 3 5 7 9

9.1 • Modifying and iterating lists 225

c. 2
5
9

TRY IT

Sports list

Create a list of sports played on a college campus. The sports to be included are baseball, football, tennis,
and table tennis.

Next, add volleyball to the list.

Next, remove "football" from the list and add "soccer" to the list.

Show the list contents after each modification.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-1-modifying-and-iterating-lists)

TRY IT

Simple Searching

Write a program that prints "found!" if "soccer" is found in the given list.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-1-modifying-and-iterating-lists)

9.2 Sorting and reversing lists

Learning objectives
By the end of this section you should be able to

• Understand the concept of sorting.
• Use built-in sort() and reverse() methods.

Sorting
Ordering elements in a sequence is often useful. Sorting is the task of arranging elements in a sequence in
ascending or descending order.

Sorting can work on numerical or non-numerical data. When ordering text, dictionary order is used. Ex: "bat"
comes before "cat" because "b" comes before "c".

CHECKPOINT

Sorting

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/

226 9 • Lists

Access for free at openstax.org

9-2-sorting-and-reversing-lists)

CONCEPTS IN PRACTICE

Sorting

1. What would be the last element of the following list if it is sorted in descending order?
[12, 3, 19, 25, 16, -3, 5]
a. 25
b. -3
c. 5

2. Arrange the following list in ascending order.
["cat", "bat", "dog", "coyote", "wolf"]
a. ["bat", "cat", "coyote", "dog", "wolf"]
b. ["wolf", "coyote", "dog", "cat", "bat"]

3. How are the words "flask" and "flash" related in Python?
a. "flask" < "flash"
b. "flask" == "flash"
c. "flask" > "flash"

Using sort() and reverse()
Python provides methods for arranging elements in a list.

• The sort() method arranges the elements of a list in ascending order. For strings, ASCII values are used
and uppercase characters come before lowercase characters, leading to unexpected results. Ex: "A" is
ordered before "a" in ascending order but so is "G"; thus, "Gail" comes before "apple".

• The reverse() method reverses the elements in a list.

EXAMPLE 9.2

Sorting and reversing lists

Setup a list of numbers
num_list = [38, 92, 23, 16]
print(num_list)

Sort the list
num_list.sort()
print(num_list)

Setup a list of words
dance_list = ["Stepping", "Ballet", "Salsa", "Kathak", "Hopak", "Flamenco",

"Dabke"]

9.2 • Sorting and reversing lists 227

Reverse the list
dance_list.reverse()
print(dance_list)

Sort the list
dance_list.sort()
print(dance_list)

The above code's output is:

[38, 92, 23, 16]
[16, 23, 38, 92]
["Dabke", "Flamenco", "Hopak", "Kathak", "Salsa", "Ballet", "Stepping"]
["Ballet", "Dabke", "Flamenco", "Hopak", "Kathak", "Salsa", "Stepping"]

CONCEPTS IN PRACTICE

sort() and reverse() methods

Use the following list for the questions below.

board_games = ["go", "chess", "scrabble", "checkers"]

4. What is the correct way to sort the list board_games in ascending order?
a. sort(board_games)
b. board_games.sort()
c. board_games.sort('ascending')

5. What is the correct way to reverse the list board_games?
a. board_games.reverse()
b. reverse(board_games)

6. What would be the last element of board_games after the reverse() method has been applied?
a. 'go'
b. 'checkers'
c. 'scrabble'

TRY IT

Sorting and reversing

Complete the program below to arrange and print the numbers in ascending and descending order.

228 9 • Lists

Access for free at openstax.org

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-2-sorting-and-reversing-lists)

9.3 Common list operations

Learning objectives
By the end of this section you should be able to

• Use built-in functions max(), min(), and sum().
• Demonstrate how to copy a list.

Using built-in operations
The max() function called on a list returns the largest element in the list. The min() function called on a list
returns the smallest element in the list. The max() and min() functions work for lists as long as elements
within the list are comparable.

The sum() function called on a list of numbers returns the sum of all elements in the list.

EXAMPLE 9.3

Common list operations

"""Common list operations."""

Set up a list of number
snum_list = [28, 92, 17, 3, -5, 999, 1]

Set up a list of words
city_list = ["New York", "Missoula", "Chicago", "Bozeman",
"Birmingham", "Austin", "Sacramento"]

Usage of the max() funtion
print(max(num_list))

max() function works for strings as well
print(max(city_list))

Usage of the min() funtion which also works for strings
print(min(num_list))

print(min(city_list))

sum() only works for a list of numbers
print(sum(num_list))

The above code's output is:

9.3 • Common list operations 229

999
Sacramento
-5
Austin
1135

CONCEPTS IN PRACTICE

List operations

1. What is the correct way to get the minimum of a list named nums_list?
a. min(nums_list)
b. nums_list.min()
c. minimum(nums_list)

2. What is the minimum of the following list?
["Lollapalooza", "Coachella", "Newport Jazz festival", "Hardly Strictly
Bluegrass", "Austin City Limits"]
a. Coachella
b. Austin City Limits
c. The minimum doesn't exist.

3. What value does the function call return?
sum([1.2, 2.1, 3.2, 5.9])
a. sum() only works for integers.
b. 11
c. 12.4

Copying a list
The copy() method is used to create a copy of a list.

CHECKPOINT

Copying a list

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-3-common-list-operations)

CONCEPTS IN PRACTICE

Copying a list

4. What is the output of the following code?

230 9 • Lists

Access for free at openstax.org

my_list = [1, 2, 3]
list2 = my_list
list2[0] = 13
print(sum(my_list))

a. 6
b. 13
c. 18

5. What is the output of the following code?

my_list = [1, 2, 3]
list2 = my_list.copy()
list2[0] = 13
print(max(my_list))

a. 3
b. 13
c. 18

6. What is the output of the following code?

my_list = ["Cat", "Dog", "Hamster"]
list2 = my_list
list2[2] = "Pigeon"
print(sum(my_list))

a. CatDogPigeon
b. Error

TRY IT

Copy

Make a copy of word_list called wisdom. Sort the list called wisdom. Create a sentence using the words in
each list and print those sentences (no need to add periods at the end of the sentences).

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-3-common-list-operations)

9.4 Nested lists

Learning objectives
By the end of this section you should be able to

• Demonstrate the use of a list-of-lists to structure data.
• Demonstrate individual element addressing using multi-dimensional indexing.
• Use nested loops to iterate a list-of-lists.

9.4 • Nested lists 231

List-of-lists
Lists can be made of any type of element. A list element can also be a list. Ex: [2, [3, 5], 17] is a valid list
with the list [3, 5] being the element at index 1.

When a list is an element inside a larger list, it is called a nested list. Nested lists are useful for expressing
multidimensional data. When each of the elements of a larger list is a smaller list, the larger list is called a list-
of-lists.

Ex: A table can be stored as a two-dimensional list-of-lists, where each row of data is a list in the list-of-lists.

CHECKPOINT

List-of-lists

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-4-nested-lists)

CONCEPTS IN PRACTICE

Lists

For each of the questions below, consider the following matrix:

1. What would be the correct way to represent matA in Python?
a. [[7, 4, 5], [3, 9, 6], [1, 2, 8]]
b. [7, 4, 5

3, 9, 6
1, 2, 8]

c. [[7, 3, 1], [4, 9, 2], [1, 2, 8]

2. What would be the correct index for the number 6 in the above list?
a. [5]
b. [2][1]
c. [1][2]

3. What would be the result of the following code:

print(matA[0])

a. Error
b. 7
c. [7, 4, 5]

Using nested loops to iterate nested lists
A nested loop structure can be used to iterate a list-of-lists. For a two-dimensional list-of-lists, an outer for
loop can be used for rows, and an inner for loop can be used for columns.

232 9 • Lists

Access for free at openstax.org

EXAMPLE 9.4

Iterating a list-of-lists

The code below demonstrates how to iterate a list-of-lists.

The outer loop on line 9 goes element by element for the larger list. Each element in the larger list is a list.
The inner loop on line 10 iterates through each element in each nested list.

1 """Iterating a list-of-lists."""
2
3 # Create a list of numbers
4 list1 = [[1, 2, 3],
5 [1, 4, 9],
6 [1, 8, 27]]
7
8 # Iterating the list-of-lists
9 for row in list1:

10 for num in row:
11 print(num, end=" ")
12 print()

The above code's output is:

1 2 3
1 4 9
1 8 27

CONCEPTS IN PRACTICE

Iterating a list-of-lists

For each question below, consider the following list:

my_list = [[7, 4, 5, 12],
[24, 3, 9, 16],
[12, 8, 91, -5]]

4. Which code prints each number in my_list starting from 7, then 4, and so on ending with -5?
a. for row in my_list:

for elem in row:
print(elem)

b. for elem in my_list:
print(elem)

5. The range() function can also be used to iterate a list-of-lists. Which code prints each number in
my_list starting from 7, then 4, and so on, ending with -5, using counting for loops?

9.4 • Nested lists 233

a. for column_index in range(0, len(my_list[0])):
for row_index in range (0, len(my_list)):

print(my_list[row_index][column_index])
b. for row_index in range(0, len(my_list)):

for column_index in range (0, len(my_list)):
print(my_list[row_index][column_index])

print()
c. for row_index in range(0, len(my_list)):

for column_index in range (0, len(my_list[0])):
print(my_list[row_index][column_index])

TRY IT

Matrix multiplication

Write a program that calculates the matrix multiplication product of the matrices matW and matZ below
and prints the result. The expected result is shown.

In the result matrix, each element is calculated according to the position of the element. The result at
position [i][j] is calculated using row i from the first matrix, W, and column j from the second matrix, Z.

Ex:

result[1][2] = (row 1 in W) times (column 2 in Z)

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-4-nested-lists)

9.5 List comprehensions

Learning objectives
By the end of this section you should be able to

• Identify the different components of a list comprehension statement.
• Implement filtering using list comprehension.

234 9 • Lists

Access for free at openstax.org

List comprehensions
A list comprehension is a Python statement to compactly create a new list using a pattern.

The general form of a list comprehension statement is shown below.

list_name = [expression for loop_variable in iterable]

list_name refers to the name of a new list, which can be anything, and the for is the for loop keyword. An
expression defines what will become part of the new list. loop_variable is an iterator, and iterable is an
object that can be iterated, such as a list or string.

EXAMPLE 9.5

Creating a new list with a list comprehension

A list comprehension shown below in the second code has the same effect as the regular for loop shown in
the first code. The resultant list is [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] in both cases.

Creating a list of squares using a for loop.

Create an empty List.
squares_list = []

Add items to a list, as squares of numbers starting at 0 and ending at 9.
for i in range(10):

squares_list.append(i*i)

Creating a list of squares using the list comprehension.

square_list = [i*i for i in range(10)]

The expression i*i is applied for each value of the loop_variable i.

EXAMPLE 9.6

A Dr. Seuss poem

A list comprehension can be used to create a list based on another list. In line 6, the for loop is written on
the list poem_lines.

1 # Create a list of words
2 words_list = ["one", "two", "red", "blue"]
3
4 # Use a list comprehension to create a new list called

poem_lines
5 # Inserting the word "fish" attached to each word in words_list
6 poem_lines = [w + " fish" for w in words_list]

9.5 • List comprehensions 235

7 for line in poem_lines:
8 print(line)

The above code's output is:

one fish
two fish
red fish
blue fish

CONCEPTS IN PRACTICE

List comprehensions

1. The component of a list comprehension defining an element of the new list is the _____.
a. expression
b. loop_variable
c. container

2. What would be the contents of b_list after executing the code below?

a_list = [1, 2, 3, 4, 5]
b_list = [i+2 for i in a_list]

a. [1, 2, 3, 4, 5]
b. [0, 1, 2, 3, 4]
c. [3, 4, 5, 6, 7]

3. What does new_list contain after executing the statement below?

new_list = [i//3 for i in range(1, 15, 3)]

a. [0.3333333333333333, 1.3333333333333333, 2.3333333333333335,
3.3333333333333335, 4.333333333333333]

b. [0, 1, 2, 3, 4]
c. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

Filtering using list comprehensions
List comprehensions can be used to filter items from a given list. A condition is added to the list
comprehension.

list_name = [expression for loop_variable in container if condition]

In a filter list comprehension, an element is added into list_name only if the condition is met.

236 9 • Lists

Access for free at openstax.org

CHECKPOINT

Filtering a list

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/9-5-list-
comprehensions)

CONCEPTS IN PRACTICE

Filtering using list comprehensions

For each code using list comprehension, select the correct resultant list in new_list.

4. my_list = [21, -1, 50, -9, 300, -50, 2]

new_list = [m for m in my_list if m < 0]

a. [21, 50, 300, 2]
b. [21, -1, 50, -9, 300, -50, 2]
c. [-1, -9, -50]

5. my_string = "This is a home."

new_list = [i for i in my_string if i in 'aeiou']

a. [i, i, a, o, e]
b. ['i', 'i'', 'a', 'o', 'e']
c. Error

6. new_list = [r for r in range (0, 21, 2) if r%2 != 0]

a. []
b. [21]
c. [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

TRY IT

Selecting five-letter words

Write a program that creates a list of only five-letter words from the given list and prints the new list.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/9-5-list-
comprehensions)

9.5 • List comprehensions 237

TRY IT

Books starting with "A"

Write a program that selects words that begin with an "A" in the given list. Make sure the new list is then
sorted in dictionary order. Finally, print the new sorted list.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/9-5-list-
comprehensions)

9.6 Chapter summary

Highlights from this chapter include:

• Lists are mutable and can be easily modified by using append(), remove(), and pop() operations.
• Lists are iterable and can be iterated using an iterator or element indexes.
• The sort() operation arranges the elements of a list in ascending order if all elements of the list are of

the same type.
• The reverse() operation reverses a list.
• The copy() method is used to create a copy of a list.
• Lists have built-in functions for finding the maximum, minimum, and summation of a list for lists with only

numeric values.
• Lists can be nested to represent multidimensional data.
• A list comprehension is a compact way of creating a new list, which can be used to filter items from an

existing list.

At this point, you should be able to write programs using lists.

Function Description

append(element) Adds the specified element to the end of a list.

remove(element) Removes the specified element from the list if the element exists.

pop() Removes the last element of a list.

max(list) Returns the maximum element of the list specified.

min(list) Returns the maximum element of the list specified.

sum(list) Returns the summation of a list composed of numbers.

sort() Sorts a list on which the method is called in ascending order.

Table 9.1 Chapter 9 reference.

238 9 • Lists

Access for free at openstax.org

Function Description

reverse() Reverses the order of elements in a list.

copy() Makes a complete copy of a list.

Table 9.1 Chapter 9 reference.

9.6 • Chapter summary 239

240 9 • Lists

Access for free at openstax.org

	Contents
	Preface
	Chapter 1 Statements
	Introduction
	1.1 Background
	1.2 Input/output
	1.3 Variables
	1.4 String basics
	1.5 Number basics
	1.6 Error messages
	1.7 Comments
	1.8 Why Python?
	1.9 Chapter summary

	Chapter 2 Expressions
	Introduction
	2.1 The Python shell
	2.2 Type conversion
	2.3 Mixed data types
	2.4 Floating-point errors
	2.5 Dividing integers
	2.6 The math module
	2.7 Formatting code
	2.8 Python careers
	2.9 Chapter summary

	Chapter 3 Objects
	Introduction
	3.1 Strings revisited
	3.2 Formatted strings
	3.3 Variables revisited
	3.4 List basics
	3.5 Tuple basics
	3.6 Chapter summary

	Chapter 4 Decisions
	Introduction
	4.1 Boolean values
	4.2 If-else statements
	4.3 Boolean operations
	4.4 Operator precedence
	4.5 Chained decisions
	4.6 Nested decisions
	4.7 Conditional expressions
	4.8 Chapter summary

	Chapter 5 Loops
	Introduction
	5.1 While loop
	5.2 For loop
	5.3 Nested loops
	5.4 Break and continue
	5.5 Loop else
	5.6 Chapter summary

	Chapter 6 Functions
	Introduction
	6.1 Defining functions
	6.2 Control flow
	6.3 Variable scope
	6.4 Parameters
	6.5 Return values
	6.6 Keyword arguments
	6.7 Chapter summary

	Chapter 7 Modules
	Introduction
	7.1 Module basics
	7.2 Importing names
	7.3 Top-level code
	7.4 The help function
	7.5 Finding modules
	7.6 Chapter summary

	Chapter 8 Strings
	Introduction
	8.1 String operations
	8.2 String slicing
	8.3 Searching/testing strings
	8.4 String formatting
	8.5 Splitting/joining strings
	8.6 Chapter summary

	Chapter 9 Lists
	Introduction
	9.1 Modifying and iterating lists
	9.2 Sorting and reversing lists
	9.3 Common list operations
	9.4 Nested lists
	9.5 List comprehensions
	9.6 Chapter summary

