
Python Classes and
Objects

A Basic Introduction

Coming up: Topics 1

Topics
•  Objects and Classes
•  Abstraction
•  Encapsulation
•  Messages

What are objects
•  An object is a datatype that stores data, but

ALSO has operations defined to act on the
data. It knows stuff and can do stuff.

•  Generally represent:
–  tangible entities (e.g., student, airline ticket, etc.)
–  intangible entities (e.g., data stream)

•  Interactions between objects define the
system operation (through message passing)

What are Objects
•  A Circle drawn on the screen:

•  Has attributes (knows stuff):
–  radius, center, color

•  Has methods (can do stuff):
– move
– change color

Design of Circle object
•  A Circle object:

–  center, which remembers the center point of the
circle,

–  radius, which stores the length of the circle’s
radius.

–  color, which stores the color

•  The draw method examines the center and
radius to decide which pixels in a window
should be colored.

•  The move method sets the center to another
location, and redraws the circle

Design of Circle
•  All objects are said to be an instance of

some class. The class of an object
determines which attributes the object
will have.

•  A class is a description of what its
instances will know and do.

Circle: classes and objects

Circle Class

Attributes:
- location, radius,color

Methods:
- draw, move

Classes are blueprints
or directions on how to
create an object

Objects are instantiations of
the class (attributes are set)

3 circle objects are shown (each has
different attribute values)

Circle Class
class Circle(object):

 def __init__(self, center, radius):
 self.center = center
 self.radius = radius

 def draw(self, canvas):
 rad = self.radius
 x1 = self.center[0]-rad
 y1 = self.center[1]-rad
 x2 = self.center[0]+rad
 y2 = self.center[1]+rad
 canvas.create_oval(x1, y1, x2, y2, fill='green')

 def move(self, x, y):
 self.center = [x, y]

Beginning of the class definition

The constructor. This is called when
someone creates a new Circle, these
assignments create attributes.

A method that uses attributes to draw the
circle

A method that sets the center to a new
location and then redraws it

objects/CircleModule.py

Constructors
•  The objcet’s constructor method is named __init__

•  The primary duty of the constructor is to set the state of the
object’s attributes (instance variables)

•  Constructors may have default parameters

•  Calling an object’s constructor (via the class name) is a
signal to the interpreter to create (instantiate) a new object
of the data type of the class
–  myCircle = Circle([10,30], 20) # Never pass “self”, it’s automatic

Creating a Circle
myCircle = Circle([10,30], 20)

•  This statement creates a new Circle
object and stores a reference to it in the
variable myCircle.

•  The parameters to the constructor are
used to initialize some of the instance
variables (center and radius) inside
myCircle.

Creating a Circle
myCircle = Circle([10,30], 20)

•  Once the object has been created, it
can be manipulated by calling on its
methods:
myCircle.draw(canvas)
myCircle.move(x,y)

Objects and Classes
•  myCircle = Circle([10,30], 20)
•  myOtherCircle = Circle([4,60], 10)

•  myCircle and myOtherCircle are objects or instances of the
Class Circle

•  The circle class defines what a circle knows (attributes) and
what it does (methods)… but to have a circle, you need to
construct an object from that class definition

•  Similar to a “list”. Python defines what a list is, and can do
(slicing, indexing, length(…), etc… but until you create one, you
don’t really have one

Using the Circle
•  from CircleModule import *
myCircle = Circle([10,30], 20)

print
"CENTER :"+str(myCircle.center)

>>> CENTER :(10, 30)

To get an instance variable from an
object, use: <<object>>.variable

What happens if the instance variable
doesn’t exist?

Using Instance Variables

myCircle = Circle([10,30], 20)

print "CENTER :"+str(circle.carl)

>>> AttributeError: Circle
instance has no attribute
’carl’

Using Instance Variables
myCircle.bob = 234

 Think: What happens if you assign ANY
variable in python that doesn’t exist?

john = 234

What happens if you set an instance
variable that doesn’t exist?

Python automatically creates a new variable if it doesn’t exist.
For instance variables this works the same… if you assign an
instance variable that doesn’t exist, Python just creates it…
Bad practice though… create all instance variables in the

constructor!

Summary: Using instance variables

•  Creating new instance variables just
means assigning them a value:
– self.bob = 234 # In constructor

•  Using instance variables is done through
dot notation:
– val = myCircle.bob # Outside the class definition
– val = self.bob # Inside class methods

Attributes / Instance Variables
•  Attributes represent the characteristics of a class. When an object is

instantiated and the values are assigned to attributes, they are then
referred to as instance variables.

•  The values of the instance variables define the state of the individual
object

•  They are referred to as instance variables because the values
assigned to an individual object (instance of a class) are unique to that
particular class

•  Attributes may be public or private (although due to their specific
implementation, they are not truly private in Python)

•  If the attributes are private, they serve to enforce the concept of
information hiding

Using methods in Objects
•  Methods are created just like a function,

but inside a class:
class Circle:

def myFunction(self, p1, p2):
<< something >>>

def function2(self, input1=‘55’):
 <<something>>

•  To use methods, call them using dot
notation:
 myCircle.myFunction(actualP1, actualP2)

Note: self is automatically passed in to all methods… you never pass it
in directly!

Messages
•  Process by which system components

interact:
– send data to another object
–  request data from another object
–  request object to perrform some behavior

•  Implemented as methods (not called
functions).
–  Functions are procsses that are object independet
–  Methods are dependent on the state of the object

Message Passing
•  When calling a method in another class,

OO uses the term “message passing”
you are passing messages from one
class to another

•  Don’t be confused… this is really just a
new name for calling a method or a
function

What is ‘self’
•  Self is a reference to the current

instance. Self lets you access all the
instance variables for the specific
instance you’re working with.

–  myCircle.myFunction(actualP1, actualP2)
•  is like calling:

–  Circle.myFunction(myCircle,actualP1, actualP2)
•  “self” really gets the value of “myCircle”.. but

it happens automatically!

Do this

Not this

Why use classes at all?
•  Classes and objects are more like the real

world. They minimize the semantic gap by
modeling the real world more closely

•  The semantic gap is the difference between
the real world and the representation in a
computer.

• 
Do you care how your TV works?
–  No… you are a user of the TV, the TV has

operations and they work. You don’t care how.

Why use classes at all?
•  Classes and objects allow you to define

an interface to some object (it’s
operations) and then use them without
know the internals.

•  Defining classes helps modularize your
program into multiple objects that work
together, that each have a defined
purpose

Encapsulation
•  Attributes and behaviors are enclosed

(encapsulated) within the logical boundary of the
object entity

–  In structured or procedural systems, data and code
are typically maintained as separate entities (e.g.,
modules and data files)

–  In Object Technology systems, each object contains
the data (attributes) and the code (behaviors) that
operates upon those attributes

Abstraction
•  Encapsulation implements the concept of

abstraction:

–  details associated with object sub-components are
enclosed within the logical boundary of the object

–  user of object only “sees” the public interface of the
object, all the internal details are hidden

Note - In Python, encapsulation is merely a programming convention.
Other languages (e.g., Java) enforce the concept more rigorously.

Abstraction

Behaviors

Attributes

Public
Interface

User of object “sees” the
abstract version of the

object through the public
interface defined by the

objectInterface

Encapsulation makes abstraction possible

Abstraction in your life

You know the public
interface. Do you know
implementation details?

Do you care?

?

As long as the public interface stays the
same, you don’t care about

implementation changes

Implementing Public/Private Interfaces

Can we ENFORCE use of getters and setters? If
I design a class I would like to make sure no one
can access my instance variables directly, they
MUST use my getters and setters

•  CS211 Preview: In Java you will be able to enforce
access restrictions on your instance variables… you
can (and should) make them private so Java itself
enforces data encapsulation.

•  So… does Python support “private” instance
variables? Yes (and no)

Implementing Public/Private Interfaces

•  Python attributes and methods are public by
default.

– public attributes: any other class or function can see
and change the attribute myCircle.radius = 20
– public method: any other class or function can call
the method myCircle.method1()

•  Make things private by adding __ (two
underscores) to the beginning of the name:

–  self.__radius = 20 # Private attribute
– def __method1(): # Private method

Implementing Public/Private Interfaces

•  Private attributes can (almost) only be
accessed by methods defined in the class

•  Private methods can (almost) only be called by
other methods defined in the class

• Idea: Everything defined in the class has access
to private parts.

Hiding your private parts (in Python)

•  You can create somewhat private parts in Python. Naming an
instance variable with an __ (two underscores) makes it private.

Hiding your private parts (in Python)

•  Be a little sneakier then.. use __name:

Nice try, but that won’t work!

Hiding your private parts (in Python)
•  Be super sneaky then.. use _Student__name:

Ahh… you saw my private parts… that was rude!

So, it is possible to interact with private data in Python, but it is difficult
and good programers know not to do it. Using the defined interface
methods (getters and setters) will make code more maintainable and
safer to use

Getters and Setters (or)
Accessors and Mutators

•  These methods are a coding convetion
•  Getters/Accessors are methods that

return an attribute
– def get_name(self):

•  Setters/Mutators are methods that set
an attribute
– def set_name(self,newName):

Why use getters?
•  Definition of my getter:

 def getName(self):
 return self.name

What if I want to store the name instead as first and last name in the class?
Well, with the getter I only have to do this:
 def getName(self):
 return self.firstname + self.lastname

If I had used dot notation outside the class, then all the code OUTSIDE the
class would need to be changed because the internal structure INSIDE the
class changed. Think about libraries of code… If the Python-authors change
how the Button class works, do you want to have to change YOUR code?
No! Encapsulation helps make that happen. They can change anything
inside they want, and as long as they don’t change the method signatures,
your code will work fine.

Getters help you hide the internal structure of your class!

Setters
•  Anoter common method type are “setters”
•  def setAge(self, age):

 self.age = age

Why? Same reason + one more. I want to hide the internal structure of my
Class, so I want people to go through my methods to get and set instance
variables. What if I wanted to start storing people’s ages in dog-years?
Easy with setters:
 def setAge(self, age):
 self.age = age / 7

More commonly, what if I want to add validation… for example, no age can
be over 200 or below 0? If people use dot notation, I cannot do it. With
setters:
 def setAge(self, age):
 if age > 200 or age < 0:
 # show error
 else:
 self.age = age / 7

Getters and Setters

•  Getters and setters are useful to provide data
encapsulation. They hide the internal structure of
your class and they should be used!

Printing objects
>>> aStudent = Student("Karl","Johnson", 18)
>>> print aStudent
<__main__.Student object at 0x8bd70>

Doesn’t look so good! Define a special function in the class
“__str__” that is used to convert your boject to a string whenever
needed

def __str__(self):
 return "Name is:"+ self.__name

Name is:KarlJohnson

•  See BouncingBall Slides.

Data Processing with Class
•  A class is useful for modeling a real-world

object with complex behavior.
•  Another common use for objects is to group

together a set of information that describes a
person or thing.
–  Eg., a company needs to keep track of information

about employees (an Employee class with
information such as employee’s name, social
security number, address, salary, etc.)

Data Processing with Class
•  Grouping information like this is often

called a record.
•  Let’s try a simple data processing

example!
•  A typical university measures courses in

terms of credit hours, and grade point
averages are calculated on a 4 point
scale where an “A” is 4 points, a “B” is
three, etc.

Data Processing with Class
•  Grade point averages are generally

computed using quality points. If a class
is worth 3 credit hours and the student
gets an “A”, then he or she earns
3(4) = 12 quality points. To calculate the
GPA, we divide the total quality points
by the number of credit hours
completed.

Data Processing with Class
•  Suppose we have a data file that

contains student grade information.
•  Each line of the file consists of a

student’s name, credit-hours, and
quality points.
Adams, Henry 127 228
Comptewell, Susan 100 400
DibbleBit, Denny 18 41.5
Jones, Jim 48.5 155
Smith, Frank 37 125.33

Data Processing with Class
•  Our job is to write a program that reads

this file to find the student with the best
GPA and print out their name, credit-
hours, and GPA.

•  The place to start? Creating a Student
class!

•  We can use a Student object to store
this information as instance variables.

Data Processing with Class
•  class Student:

 def __init__(self, name, hours, qpoints):
 self.name = name
 self.hours = float(hours)
 self.qpoints = float(qpoints)

•  The values for hours are converted to
float to handle parameters that may be
floats, ints, or strings.

•  To create a student record:
aStudent = Student(“Adams, Henry”, 127, 228)

•  The coolest thing is that we can store all the
information about a student in a single
variable!

Data Processing with Class
•  We need to be able to access this information, so we

need to define a set of accessor methods.
•  def getName(self):

 return self.name

 def getHours(self):
 return self.hours

 def getQPoints(self):
 return self.qpoints

 def gpa(self):
 return self.qpoints/self.hours

•  For example, to print a student’s name you could
write:
print aStudent.getName()

•  aStudent.name

These are commonly
called “getters”

Data Processing with Class
•  How can we use these tools to find the

student with the best GPA?
•  We can use an algorithm similar to

finding the max of n numbers! We could
look through the list one by one,
keeping track of the best student seen
so far!

Data Processing with Class
Pseudocode:
Get the file name from the user

Open the file for reading

Set best to be the first student

For each student s in the file

 if s.gpa() > best.gpa

 set best to s

Print out information about best

Data Processing with Class
gpa.py
Program to find student with highest GPA
import string

class Student:

 def __init__(self, name, hours, qpoints):
 self.name = name
 self.hours = float(hours)
 self.qpoints = float(qpoints)

 def getName(self):
 return self.name

 def getHours(self):
 return self.hours

 def getQPoints(self):
 return self.qpoints

 def gpa(self):
 return self.qpoints/self.hours

def makeStudent(infoStr):
 name, hours, qpoints = string.split(infoStr,"\t")
 return Student(name, hours, qpoints)

def main():
 filename = raw_input("Enter name the grade file: ")
 infile = open(filename, 'r')
 best = makeStudent(infile.readline())
 for line in infile:
 s = makeStudent(line)
 if s.gpa() > best.gpa():
 best = s
 infile.close()
 print "The best student is:", best.getName()
 print "hours:", best.getHours()
 print "GPA:", best.gpa()

if __name__ == '__main__':
 main()

Helping other people use your classes

•  Frequently, you will need to write classes other
people will use

•  Or classes you will want to use later, but have
forgotton how

Answer: Document your class usage!

Putting Classes in Modules
•  Sometimes we may program a class that

could useful in many other programs.
•  If you might be reusing the code again, put

it into its own module file with
documentation to describe how the class
can be used so that you won’t have to try
to figure it out in the future from looking at
the code!

Module Documentation
•  You are already familiar with “#” to indicate

comments explaining what’s going on in a
Python file.

•  Python also has a special kind of
commenting convention called the
docstring. You can insert a plain string
literal as the first line of a module, class, or
function to document that component.

Module Documentation
•  Why use a docstring?

–  Ordinary comments are ignored by Python
–  Docstrings are accessible in a special attribute

called __doc__.
•  Most Python library modules have extensive

docstrings. For example, if you can’t
remember how to use random:
>>> import random
>>> print random.random.__doc__
random() -> x in the interval [0, 1).

Module Documentation
•  Docstrings are also used by the Python online

help system and by a utility called PyDoc that
automatically builds documentation for
Python modules. You could get the same
information like this:
>>> import random
>>> help(random.random)
Help on built-in function random:

random(...)
 random() -> x in the interval [0, 1).

Module Documentation
•  To see the documentation for an entire

module, try typing help(module_name)!
•  The following code for the projectile

class has docstrings.

Module Documentation
projectile.py

"""projectile.py
Provides a simple class for modeling the flight of projectiles."""

from math import pi, sin, cos

class Projectile:

 """Simulates the flight of simple projectiles near the earth's
 surface, ignoring wind resistance. Tracking is done in two
 dimensions, height (y) and distance (x)."""

 def __init__(self, angle, velocity, height):
 """Create a projectile with given launch angle, initial
 velocity and height."""
 self.xpos = 0.0
 self.ypos = height
 theta = pi * angle / 180.0
 self.xvel = velocity * cos(theta)
 self.yvel = velocity * sin(theta)

Module Documentation
 def update(self, time):
 """Update the state of this projectile to move it time seconds
 farther into its flight"""
 self.xpos = self.xpos + time * self.xvel
 yvel1 = self.yvel - 9.8 * time
 self.ypos = self.ypos + time * (self.yvel + yvel1) / 2.0
 self.yvel = yvel1

 def getY(self):
 "Returns the y position (height) of this projectile."
 return self.ypos

 def getX(self):
 "Returns the x position (distance) of this projectile."
 return self.xpos

PyDoc
•  PyDoc The pydoc module automatically

generates documentation from Python
modules. The documentation can be
presented as pages of text on the
console, served to a Web browser, or
saved to HTML files.

•  pydoc –g # Launch the GUI

