
Copyright © 2025 Skill Foundry

PYTHON

AUTOMATION
Beginner to Advance Guide

Copyright © 2025 Skill Foundry

index

INTRODUCTION .. 3

Your First Python Automation Script ... 7

WhatsApp Message Automation .. 11

Automating Instagram .. 14

Telegram Bot Creation.. 18

Email Automation with Python .. 23

PDF and Document Automation ... 28

Copyright © 2025 Skill Foundry

INTRODUCTION

🟡 What is Automation?

Let’s start with a simple idea — what if your computer could do boring tasks for

you, automatically?

Automation means writing code that performs repetitive tasks for you.

Instead of doing the same thing again and again — like sending a message,

renaming files, or checking your email — you let Python do it for you.

Think of it like building your own robot assistant.

🟡 Real-Life Examples of Automation

Here are things you can automate using Python:

✅ Sending WhatsApp messages to friends at a specific time

✅ Downloading Instagram posts or stories automatically

✅ Cleaning up your messy "Downloads" folder

✅ Sending personalized emails to 100+ people in one click

✅ Merging PDFs into one single document

✅ Getting a Telegram bot to reply to messages automatically

🔥 Why Python for Automation?

There are many programming languages, but Python is the BEST for automation.

Why?

✔️ Simple and beginner-friendly syntax

✔️ Huge library support (you’ll learn them soon)

✔️ Cross-platform (Windows, Mac, Linux — all work)

✔️ Huge community (You’ll never be stuck!)

Python’s power isn’t just in writing automation scripts — it’s in making your life

easier.

💡 Example: A Life Without Python Automation

Imagine this: You need to send 30 birthday wishes on WhatsApp every month.

You’d have to:

 Open WhatsApp

Copyright © 2025 Skill Foundry

 Search each contact

 Type the message

 Send it manually

OR… you could write a Python script that does this automatically at 9 AM, while

you're sleeping. 😴

That’s the power of automation.

🔧 What Will You Learn in This Module?

In this first module, we’ll walk step-by-step through:

1. How to install and set up Python + Code Editor

2. How to install powerful libraries for automation

3. How to write your very first automation script

4. How to handle automation safely (delays, errors, etc.)

Setting Up Your Python Automation Environment

✅ Step 1: Installing Python

Python is the programming language we’ll use to write automation scripts.

To install it:

1. Go to the official website:

https://www.python.org/downloads

2. Download the latest version (usually at the top of the page).

3. Run the installer. On the first screen, very important:

o ✅ Check the box that says “Add Python to PATH”

o Then click “Install Now”

⚠️ If you don’t check that box, Python won’t work from the terminal.

Once installed, open your command prompt (Windows) or terminal (Mac/Linux) and

type:

python --version

If you see something like:

Python 3.12.2

https://www.python.org/downloads

Copyright © 2025 Skill Foundry

You’re good to go!

✅ Step 2: Installing VS Code (Code Editor)

We need a clean, fast code editor to write Python scripts.

1. Download Visual Studio Code from:

https://code.visualstudio.com/

2. Install it using the default options.

3. Open it, then go to the Extensions panel (left sidebar icon that looks like

blocks), and search for:

Python

4. Install the official Python extension (made by Microsoft).

This extension will help you run scripts, get smart suggestions, and fix errors easily.

✅ Step 3: Creating Your First Project Folder

Let’s organize your automation work.

1. On your Desktop (or any location), create a new folder named:

Python Automation Mastery

2. Open VS Code.

3. Click on File → Open Folder and select the folder you just created.

Now all your scripts and files will live inside this one folder. Neat and professional.

✅ Step 4: Creating a Virtual Environment (Very Important)

A virtual environment is like a clean space just for your project — it avoids conflicts

with other Python tools on your system.

Inside VS Code terminal (press Ctrl + ~ to open), type:

python -m venv venv

This creates a folder named venv with an isolated environment.

To activate it:

 On Windows:

.\venv\Scripts\activate

https://code.visualstudio.com/

Copyright © 2025 Skill Foundry

 On Mac/Linux:

source venv/bin/activate

You’ll see your terminal change to:

(venv) YourFolderName$

Now you’re working inside your project’s own environment. 🔒

✅ Step 5: Installing Required Libraries

Let’s install all the important libraries we’ll use in later chapters.

In the terminal, type:

pip install pyautogui pywhatkit instabot python-telegram-bot

pypdf2 fpdf smtplib schedule

Each of these tools has a specific use:

 pyautogui → for controlling mouse/keyboard

 pywhatkit → for sending WhatsApp messages

 instabot → to automate Instagram

 python-telegram-bot → to create Telegram bots

 pypdf2 and fpdf → for PDF reading/writing

 smtplib → for email automation

 schedule → for setting daily/weekly tasks

🟡 How to Check if a Library Installed Successfully

Just type:

pip list

This will show all installed packages. If you see the names listed above, you’re

ready!

Copyright © 2025 Skill Foundry

Your First Python Automation Script

🤖: Controlling Mouse and Keyboard

🟡 What is PyAutoGUI?

PyAutoGUI is one of the coolest Python libraries.

It lets you control your mouse, keyboard, and screen just like a human.

You can:

 Move the mouse automatically

 Click or double-click on screen

 Type messages

 Press special keys (Enter, Ctrl, etc.)

 Take screenshots

Basically, you can "remote control" your computer using Python.

🔹 Installing PyAutoGUI

If you haven’t installed it yet, open your terminal and run:

pip install pyautogui

✅ After installation, you’re ready to use it.

🔹 Writing Your First Automation Script

Let’s write a simple script that moves the mouse automatically.

1. In your project folder (Python Automation Mastery), create a new file:

mouse_move.py

2. Open it, and write this code:

import pyautogui

import time

Wait for 5 seconds before starting

time.sleep(5)

Copyright © 2025 Skill Foundry

Move the mouse to x=100, y=100 over 2 seconds

pyautogui.moveTo(100, 100, duration=2)

Move mouse relative to its current position

pyautogui.moveRel(200, 0, duration=2)

🚀 How This Works:

 time.sleep(5) → Gives you 5 seconds to switch to any window you want

 moveTo(x, y, duration) → Moves mouse to specific (x, y) position

 moveRel(xOffset, yOffset, duration) → Moves mouse relative to its current

position

🟡 Testing It Out

1. Run the script:

python mouse_move.py

2. Quickly switch to any window. After 5 seconds, you’ll see your mouse moving

magically!

🔥 Automating Clicks

You can also automate clicks:

Click at current mouse location

pyautogui.click()

Double click

pyautogui.doubleClick()

Right click

pyautogui.rightClick()

You can even click at a specific position:

Move and click at (500, 500)

pyautogui.moveTo(500, 500, duration=1)

pyautogui.click()

🔥 Automating Keyboard Typing

Copyright © 2025 Skill Foundry

Typing automatically is super easy:

Type a message automatically

pyautogui.write('Hello! This is automation.', interval=0.1)

 interval=0.1 → means 0.1 second delay between each character

You can also press special keys:

Press the 'Enter' key

pyautogui.press('enter')

Or hold down keys:

Hold down the 'Ctrl' key

pyautogui.keyDown('ctrl')

Press 'c' to copy

pyautogui.press('c')

Release 'Ctrl'

pyautogui.keyUp('ctrl')

⚡ Pro Tip: Finding Mouse Coordinates

You need exact (x, y) positions to automate perfectly.

PyAutoGUI has a cool way to find your mouse position:

Create a new Python file called:

position_finder.py

Add this code:

import pyautogui

import time

time.sleep(5)

print(pyautogui.position())

✅ Run the script → Move your mouse anywhere → After 5 seconds, it will print

your mouse coordinates!

📌 Important Safety Tip

When automating mouse/keyboard, sometimes your script might go crazy 😅

If you ever get stuck, immediately move your mouse cursor to any corner of the

screen.

This will stop PyAutoGUI automatically.

Copyright © 2025 Skill Foundry

🛠️ Small Practice Task

Create a script that:

 Moves the mouse to open Notepad

 Types a simple message

 Saves the file automatically

✅ Now you’ve learned how to control your mouse and keyboard like a boss with

Python!

In the next chapter, we’ll dive into sending WhatsApp messages automatically

using PyWhatKit — pure magic coming up 🚀

Copyright © 2025 Skill Foundry

WhatsApp Message Automation

WhatsApp Message Automation using Python (PyWhatKit)

🔹 What is PyWhatKit?

PyWhatKit is a powerful library that lets us:

 Send WhatsApp messages automatically

 Perform Google searches

 Convert text to handwriting

 Even play YouTube videos!

But today, we’ll focus on the WhatsApp automation feature.

🔧 Installing PyWhatKit

If you haven’t already, install it using:

bash

CopyEdit

pip install pywhatkit

It may also install some supporting libraries like pyautogui, pymsgbox, etc.

🔐 Important Note Before You Start

To send WhatsApp messages through Python:

 You must have WhatsApp Web logged in on your browser (Google Chrome)

 Your system’s default browser must be Chrome

 Internet connection should be ON

✨ Sending a WhatsApp Message Automatically

Here’s your first automation script:

1. Create a new file in your project folder:

Copyright © 2025 Skill Foundry

send_whatsapp.py

2. Paste this code:

import pywhatkit as kit

Send a WhatsApp message

kit.sendwhatmsg("+911234567890", "Hello! This is an automated

message from Python 😎", 15, 30)

This line means:

sendwhatmsg(phone_no, message, hour, minute)

So it will send the message at 15:30 (3:30 PM) to the given phone number.

Make sure the number is in international format with +91 for India.

⏱️ What Happens When You Run It?

1. The browser will automatically open WhatsApp Web

2. It will wait until 15:30

3. Then paste and send your message — hands-free!

If you want to test quickly, schedule the message for 1–2 minutes in the future. Like:

kit.sendwhatmsg("+911234567890", "Test message", 14, 45)

🕒 Pro tip: Use datetime module to automate this even more.

⏳ What If You Want Instant Sending?

By default, sendwhatmsg() waits for the scheduled time. But for instant messages,

use:

kit.sendwhatmsg_instantly("+911234567890", "Instant message",

wait_time=10, tab_close=True)

 wait_time: seconds to wait before sending

 tab_close=True: closes the browser tab after sending

⚠️ Use this carefully, as WhatsApp may block you if spammed too much.

🛠️ Mini Practice Task

Copyright © 2025 Skill Foundry

Try this:

Create a script that asks user for:

 Phone number

 Message

 Time to send

Then use sendwhatmsg() to send it.

😱 Can I Send to Multiple People?

No direct “bulk messaging” is supported for privacy reasons. But you can loop

through numbers one by one (we’ll cover this in a later chapter 😉)

📌 Important Tips

 Always keep your browser and WhatsApp Web logged in

 Don’t use this to spam — WhatsApp may detect it

 Use for reminders, updates, birthday wishes, etc.

✅ That’s it — you just automated WhatsApp using Python.

Copyright © 2025 Skill Foundry

Automating Instagram

📸 Introduction

Instagram is one of the most popular platforms today.

What if you could automate things like:

 Auto login to Instagram

 Auto follow users

 Auto unfollow users

 Auto like posts

 Even send automated messages?

With Python, it’s possible — and surprisingly easy!

In this chapter, we’ll automate Instagram step-by-step using an amazing library

called Instabot.

🔹 What is Instabot?

Instabot is a Python library that can:

 Automatically login to your Instagram account

 Follow/unfollow users

 Like posts

 Comment on posts

 Send direct messages

Important: Always use automation carefully on Instagram.

Spamming may lead to account restrictions or bans.

We'll use this bot safely for basic tasks.

🔧 Installing Instabot

First, install the Instabot library.

In your terminal, type:

pip install instabot

✅ After installation, you are ready to create your bot!

Copyright © 2025 Skill Foundry

🔐 Important Preparation

Before you automate Instagram:

 Make sure your Instagram account is older than 1–2 months.

 Avoid using new accounts — Instagram monitors them more strictly.

 Do not spam with automation — start with small limits.

🚀 Logging into Instagram Automatically

Let’s create your first InstaBot script:

1. Create a new file:

insta_login.py

2. Paste this code:

from instabot import Bot

bot = Bot()

Login

bot.login(username="your_username", password="your_password")

Replace "your_username" and "your_password" with your real Instagram

credentials.

✅ When you run it, the bot will automatically login to your Instagram account.

🔥 Automating Follow and Unfollow

After login, you can follow/unfollow people easily.

➡️ Auto Follow:

bot.follow("friend_username")

This will follow the user with the given username.

➡️ Auto Unfollow:

bot.unfollow("friend_username")

This will unfollow the user.

Copyright © 2025 Skill Foundry

🔥 Automating Liking Posts

You can even like photos of a user automatically!

Example:

bot.like_user("friend_username", amount=3)

This will like 3 posts of the given user.

You can also like posts by hashtags:

bot.like_hashtag("travel", amount=5)

✅ This likes 5 posts with the hashtag #travel.

🔥 Sending Direct Messages (DMs)

You can send messages automatically:

bot.send_message("Hello from Python!", ["friend_username"])

You can send the same message to multiple users too by giving a list:

bot.send_message("Good Morning!", ["friend1", "friend2",

"friend3"])

⚙️ Some More Useful Commands

 Upload a photo automatically:

bot.upload_photo("path_to_photo.jpg", caption="My new post via

Python 🚀")

 Get your own followers:

followers = bot.get_user_followers("your_username")

print(followers)

 Get your following list:

following = bot.get_user_following("your_username")

print(following)

✅ You can then automate follow-backs, unfollows, etc.

⚡ Pro Tips for Safe Automation

Copyright © 2025 Skill Foundry

 Limit actions:

Example: 20–30 likes, 10–15 follows/unfollows per hour

 Randomize actions:

Do not perform 100 actions at once — take natural breaks using time.sleep()

 Avoid bots on brand-new accounts:

Instagram easily flags new accounts.

 Keep two-factor authentication OFF when using Instabot (or it might cause

login problems).

🛠️ Small Practice Task

Create a Python script that:

 Logs into Instagram

 Follows 5 users (you choose)

 Likes 3 photos of each user

 Sends a “Hello!” DM to them

(This will make you comfortable with automation.)

✅ That’s it — now you have learned how to automate Instagram using Python

easily!

In the next chapter, we will build a real Telegram Bot from scratch — and trust me,

it's going to be super fun 🚀

Copyright © 2025 Skill Foundry

Telegram Bot Creation

📱 Why Telegram Bots?

Telegram is not just a messaging app — it supports powerful bots that can:

 Reply to user messages

 Send custom replies, images, documents

 Work as mini-apps

 Handle tasks like reminders, APIs, notifications, and more

And the best part?

👉 You don’t need to “hack” anything. Telegram officially supports bots via its Bot

API.

🔹 What You'll Learn

In this chapter, you will learn to:

 Create your own Telegram Bot

 Set up your bot token

 Read user messages

 Reply to users

 Send files, images, and buttons

Let’s go step by step 👇

🔧 Step 1: Create Your Telegram Bot

1. Open Telegram and search: BotFather

2. Start a chat with BotFather and type:

/newbot

3. It will ask:

o Bot name → e.g. PythonAutomationBot

o Bot username → must end with bot (e.g. python_auto_bot)

✅ Once done, it will give you a long API Token like this:

Copyright © 2025 Skill Foundry

1234567890:AAHxK_jJfdfjHfiufHHdju34FjsdfKD

Copy this token. This is your bot’s password to control it using Python.

🔧 Step 2: Install Required Library

We’ll use a library called python-telegram-bot.

Install it using:

pip install python-telegram-bot --upgrade

This will help us connect to Telegram’s API and handle bot messages easily.

🤖 Step 3: Create Your First Bot Script

Create a file my_bot.py and paste this code:

from telegram import Update

from telegram.ext import ApplicationBuilder, CommandHandler,

ContextTypes

async def start(update: Update, context:

ContextTypes.DEFAULT_TYPE):

 await update.message.reply_text("Hello! I am your Python

Automation Bot 🤖")

app = ApplicationBuilder().token("YOUR_BOT_TOKEN").build()

app.add_handler(CommandHandler("start", start))

app.run_polling()

📌 Replace "YOUR_BOT_TOKEN" with your actual token.

Now, run the file:

python my_bot.py

✅ Your bot is now live and listening!

Open your bot on Telegram (using its username) and type:

/start

You’ll see the reply:

Hello! I am your Python Automation Bot 🤖

Boom! Bot created successfully 🚀

Copyright © 2025 Skill Foundry

🟡 How It Works

 run_polling() keeps checking for new messages

 CommandHandler("start", start) listens for the /start command

 reply_text() sends message back to the user

We’ll now build more features step by step.

💬 Replying to User Messages

Let’s make the bot reply with a custom message when the user types anything.

Update your my_bot.py like this:

from telegram.ext import MessageHandler, filters

New handler for text messages

async def reply_to_user(update: Update, context:

ContextTypes.DEFAULT_TYPE):

 user_message = update.message.text

 await update.message.reply_text(f"You said:

{user_message}")

Add this handler below your existing code

app.add_handler(MessageHandler(filters.TEXT, reply_to_user))

✅ Now your bot will echo back whatever the user types.

Example:

User: Hello bot

Bot: You said: Hello bot

🖼️ Sending Images

Let’s make the bot send an image when someone types /photo.

1. Save any image in the same folder (example: cat.jpg)

2. Add this command:

from telegram import InputFile

async def send_photo(update: Update, context:

ContextTypes.DEFAULT_TYPE):

Copyright © 2025 Skill Foundry

 photo = InputFile("cat.jpg")

 await update.message.reply_photo(photo, caption="Here’s a

cute cat 🐱")

app.add_handler(CommandHandler("photo", send_photo))

Now, type /photo to see your bot send an image with a caption.

📄 Sending Documents

Want to send a PDF, doc, or ZIP file? It’s super simple.

Add this command:

async def send_file(update: Update, context:

ContextTypes.DEFAULT_TYPE):

 doc = InputFile("my_file.pdf") # Replace with your file

 await update.message.reply_document(doc, caption="Here’s

your file!")

app.add_handler(CommandHandler("file", send_file))

Now, send a PDF or ZIP by typing /file.

🟡 Adding Buttons (Inline Keyboard)

Let’s make a menu with buttons. Example: Yes / No options.

Add this:

from telegram import InlineKeyboardButton,

InlineKeyboardMarkup

async def show_buttons(update: Update, context:

ContextTypes.DEFAULT_TYPE):

 keyboard = [

 [InlineKeyboardButton("Yes 👍", callback_data="yes"),

 InlineKeyboardButton("No 👎", callback_data="no")]

]

 reply_markup = InlineKeyboardMarkup(keyboard)

 await update.message.reply_text("Do you like this bot?",

reply_markup=reply_markup)

app.add_handler(CommandHandler("buttons", show_buttons))

Then add this callback handler:

from telegram.ext import CallbackQueryHandler

Copyright © 2025 Skill Foundry

async def button_handler(update: Update, context:

ContextTypes.DEFAULT_TYPE):

 query = update.callback_query

 await query.answer()

 if query.data == "yes":

 await query.edit_message_text("Awesome! Thanks 🙌")

 else:

 await query.edit_message_text("No worries! I’ll

improve 😇")

app.add_handler(CallbackQueryHandler(button_handler))

✅ Now when you type /buttons, the bot shows two options, and replies based on

your click.

🛠️ Practice Task

Create a bot that does all this:

 Replies to user messages

 Sends a welcome message on /start

 Sends an image on /photo

 Sends a PDF on /file

 Shows buttons on /buttons

Try adding your own logic, like sending jokes or links!

✅ That’s a fully working Telegram bot — and this is just the beginning!

You can now use this bot to build tools, reminders, chat assistants, or even

connect it to your own website/app.

Copyright © 2025 Skill Foundry

Email Automation with Python

🟡 Why Automate Emails?

Email automation is useful for:

 Sending reports or updates automatically

 Notifying users or clients

 Sending attachments (PDFs, invoices, certificates)

 Building email bots or campaigns

With Python, we can send emails in seconds — no manual typing, no delays!

🛠️ What You’ll Learn

 How to send emails using Python

 How to attach files (PDFs, images, ZIPs)

 How to send to multiple recipients

 How to connect with Gmail securely

Let’s dive in!

🔧 Step 1: Enable Gmail Access (IMPORTANT)

If you’re using Gmail, you need to allow less secure apps or use an app password.

Option A: If 2-Step Verification is OFF

1. Visit: https://myaccount.google.com/lesssecureapps

2. Turn ON access

Option B: If 2-Step Verification is ON (recommended)

1. Visit: https://myaccount.google.com/apppasswords

2. Generate a new App Password for "Mail"

3. Copy the 16-digit password — you'll use this instead of your normal password

🟡 Step 2: Send Your First Email

Install the required library (for attachments):

Copyright © 2025 Skill Foundry

pip install secure-smtplib

Now, create a file send_email.py:

import smtplib

from email.mime.text import MIMEText

from email.mime.multipart import MIMEMultipart

Email setup

sender_email = "youremail@gmail.com"

receiver_email = "receiver@gmail.com"

password = "your_app_password"

Create the email

message = MIMEMultipart("alternative")

message["Subject"] = "Hello from Python!"

message["From"] = sender_email

message["To"] = receiver_email

text = "Hi there! This email was sent using Python 😎"

part = MIMEText(text, "plain")

message.attach(part)

Send the email

with smtplib.SMTP_SSL("smtp.gmail.com", 465) as server:

 server.login(sender_email, password)

 server.sendmail(sender_email, receiver_email,

message.as_string())

print("✅ Email sent successfully!")

📌 Replace youremail, receiver, and password with your own values.

📎 Sending Attachments (PDF, ZIP, etc.)

Let’s send a PDF file with the email:

from email.mime.application import MIMEApplication

filename = "sample.pdf" # Your file name

with open(filename, "rb") as f:

 attachment = MIMEApplication(f.read(), _subtype="pdf")

Copyright © 2025 Skill Foundry

 attachment.add_header("Content-Disposition", "attachment",

filename=filename)

 message.attach(attachment)

💡 You can attach multiple files using the same method.

🟡🤝🟡 Sending to Multiple Recipients

Want to send one email to multiple people?

receiver_emails = ["person1@gmail.com", "person2@gmail.com",

"person3@gmail.com"]

for email in receiver_emails:

 message["To"] = email

 server.sendmail(sender_email, email, message.as_string())

✅ Great for reports, notifications, or email campaigns.

✨ Make it Dynamic (Using Input or CSV)

You can automate this further by:

 Reading emails from a .csv file

 Customizing the name/message for each person

 Creating loops to send personalized emails

Sending Beautiful HTML Emails

Plain text is fine, but HTML emails look better.

Let’s send a styled email with bold text, links, and colors:

html = """

<html>

 <body>

 <h2 style='color: teal;'>Hello from Python 🚀</h2>

 <p>This is a test email sent with <i>HTML

formatting</i>.</p>

 <p>Check out our Website</p>

 </body>

</html>

"""

part2 = MIMEText(html, "html")

Copyright © 2025 Skill Foundry

message.attach(part2)

✅ Now your email will have both plain text and styled HTML.

📊 Read Email Contacts from a CSV File

Instead of typing emails one by one, save them in a .csv file like this:

contacts.csv

name,email

Raj,raj@example.com

Aisha,aisha@gmail.com

John,john@yahoo.com

Now read them using Python:

import csv

with open("contacts.csv", "r") as file:

 reader = csv.DictReader(file)

 contacts = [row for row in reader]

for contact in contacts:

 receiver = contact["email"]

 name = contact["name"]

 # Customize email

 text = f"Hi {name}, this is a personalized email from

Python!"

 message = MIMEMultipart("alternative")

 message["Subject"] = "Personalized Email"

 message["From"] = sender_email

 message["To"] = receiver

 message.attach(MIMEText(text, "plain"))

 with smtplib.SMTP_SSL("smtp.gmail.com", 465) as server:

 server.login(sender_email, password)

 server.sendmail(sender_email, receiver,

message.as_string())

✅ Now each contact gets their own custom message.

🔁 Build a Mini Campaign System (Optional)

You can combine all this into a mini system that:

Copyright © 2025 Skill Foundry

 Sends bulk emails from a contact list

 Attaches PDFs automatically

 Logs successful sends

You can even schedule it using Python’s schedule or Windows Task Scheduler

for daily/weekly reports.

🟡 Practice Task

Build a Python script that:

 Sends an HTML email with one attachment

 Reads contacts from a CSV file

 Greets each user by name

 Logs which emails were sent successfully

🔥 You’ve now mastered Email Automation with Python!

From simple sends to dynamic campaigns — you can build tools, alerts,

reminders, or marketing systems.

Copyright © 2025 Skill Foundry

PDF and Document Automation

Why Automate PDFs?

Automating PDFs is useful for:

 Extracting data from large PDFs (e.g., invoices, reports)

 Merging multiple files into one

 Modifying documents (e.g., adding watermarks, editing text)

 Generating PDFs dynamically (e.g., receipts, certificates)

Python makes all of this super easy with libraries like PyPDF2 and ReportLab.

🛠️ Step 1: Install PyPDF2

We’ll use PyPDF2 for basic PDF tasks. Install it first:

pip install pypdf2

✂️ Extract Text from a PDF

Let’s start with extracting text from an existing PDF.

Create a script extract_text.py:

import PyPDF2

Open the PDF file

with open("document.pdf", "rb") as file:

 reader = PyPDF2.PdfReader(file)

 text = ""

 # Extract text from all pages

 for page in reader.pages:

 text += page.extract_text()

print(text)

🔧 What it does: It reads a PDF file, extracts text, and prints it to the console.

🔀 Merge Multiple PDFs

Copyright © 2025 Skill Foundry

You can merge multiple PDFs into one using PyPDF2. Let’s say you have two PDFs:

file1.pdf and file2.pdf.

import PyPDF2

Create a PdfWriter object

pdf_writer = PyPDF2.PdfWriter()

Read the first PDF

with open("file1.pdf", "rb") as file1:

 reader = PyPDF2.PdfReader(file1)

 pdf_writer.add_page(reader.pages[0]) # Add first page of

file1

Read the second PDF

with open("file2.pdf", "rb") as file2:

 reader = PyPDF2.PdfReader(file2)

 pdf_writer.add_page(reader.pages[0]) # Add first page of

file2

Write the merged PDF to a new file

with open("merged_output.pdf", "wb") as output_file:

 pdf_writer.write(output_file)

print("✅ PDFs merged successfully!")

Now you’ll have a new PDF called merged_output.pdf with the first page from each

of the original PDFs.

✂️ Split a PDF into Multiple Pages

If you want to split a PDF into individual pages, here’s how:

import PyPDF2

Open the source PDF

with open("document.pdf", "rb") as file:

 reader = PyPDF2.PdfReader(file)

 pdf_writer = PyPDF2.PdfWriter()

 # Extract pages and save them as separate files

 for i in range(len(reader.pages)):

 pdf_writer.add_page(reader.pages[i])

 with open(f"page_{i + 1}.pdf", "wb") as output_file:

 pdf_writer.write(output_file)

 print("✅ PDF split into individual pages!")

Now each page of the original PDF will be saved as a separate file (e.g., page_1.pdf,

page_2.pdf).

Copyright © 2025 Skill Foundry

💧 Add a Watermark to a PDF

Let’s add a watermark to a PDF page. First, you need a watermark PDF (e.g.,

watermark.pdf).

import PyPDF2

Open the original PDF and the watermark PDF

with open("document.pdf", "rb") as original_file,

open("watermark.pdf", "rb") as watermark_file:

 reader = PyPDF2.PdfReader(original_file)

 watermark = PyPDF2.PdfReader(watermark_file)

 # Apply watermark to each page

 pdf_writer = PyPDF2.PdfWriter()

 for page in reader.pages:

 page.merge_page(watermark.pages[0]) # Merge watermark

 pdf_writer.add_page(page)

 # Save the watermarked PDF

 with open("watermarked_document.pdf", "wb") as

output_file:

 pdf_writer.write(output_file)

print("✅ Watermark added to PDF!")

This will overlay the watermark on every page of the document.

📝 Generate a PDF from Scratch

Finally, let’s create a brand new PDF. We’ll use ReportLab for this.

First, install ReportLab:

pip install reportlab

Now, create a simple PDF with a title and some text:

from reportlab.lib.pagesizes import letter

from reportlab.pdfgen import canvas

Create a new PDF

Copyright © 2025 Skill Foundry

c = canvas.Canvas("generated_document.pdf", pagesize=letter)

Add some text

c.setFont("Helvetica", 12)

c.drawString(100, 750, "Hello, this is a generated PDF with

Python!")

Save the PDF

c.save()

print("✅ PDF generated!")

This will create a new PDF called generated_document.pdf with some basic text.

🟡 Practice Task

Create a Python script that:

1. Extracts text from a PDF

2. Merges it with another PDF

3. Adds a watermark

4. Generates a new PDF with custom content

Now you know how to manipulate PDFs in Python! You can automate everything

from text extraction to PDF generation and modification.

	INTRODUCTION
	Your First Python Automation Script
	WhatsApp Message Automation
	Automating Instagram
	Telegram Bot Creation
	Email Automation with Python
	PDF and Document Automation

