
Copyright © 2025 Skill Foundry

ARTIFICIAL

INTELLIGENCE

WITH PYTHON

Copyright © 2025 Skill Foundry

index

INTRODUCTION .. 3

Setting Up AI Development Environment with Python .. 7

Understanding Machine Learning — The Heart of AI ... 11

Supervised Learning Deep Dive — Regression and Classification Models 16

Unsupervised Learning Deep Dive — Discovering Hidden Patterns 21

Neural Networks Fundamentals — Building Brains for AI .. 26

Project — Build a Neural Network to Classify Handwritten Digits 30

Deep Learning for Image Classification — CNNs Explained 33

Advanced Image Classification — Transfer Learning ... 37

Natural Language Processing (NLP) Basics with Python ... 41

Spam Detection Using Machine Learning .. 45

Deep Learning for Text Classification (with NLP) ... 48

Computer Vision Basics and Image Classification ... 51

AI for Automation: Files, Web, and Emails ... 56

AI Chatbots and Virtual Assistants ... 61

Copyright © 2025 Skill Foundry

INTRODUCTION

What is Artificial Intelligence?

Artificial Intelligence (AI) is a field of computer science that aims to create machines

capable of performing tasks that typically require human intelligence. These tasks

include learning, reasoning, problem-solving, perception, language understanding,

and even creativity.

In simple words:

AI is about making computers think, learn, and act intelligently, just like humans.

Core Objectives of AI

 Automation: Automating tasks that are repetitive or complex.

 Learning: Enabling machines to learn from experience (data).

 Reasoning: Making logical deductions and solving problems.

 Perception: Interpreting the world through images, sounds, and sensors.

 Interaction: Communicating and collaborating with humans naturally.

A Short History of AI

Year Milestone

1950
Alan Turing introduces the "Turing Test" to assess a machine's ability to

exhibit intelligent behavior.

1956
The term "Artificial Intelligence" is coined by John McCarthy at the

Dartmouth Conference.

1980s Rise of Expert Systems (programs that mimic human experts).

2012
Deep learning gains popularity after a major breakthrough in image

recognition.

2020+
AI becomes mainstream — self-driving cars, AI doctors, AI-generated art,

and intelligent personal assistants.

Copyright © 2025 Skill Foundry

Real-World Applications of AI

AI is not science fiction anymore; it is part of our daily lives.

Industry AI Applications

Healthcare Disease prediction, robotic surgeries, drug discovery

Finance Fraud detection, automated trading, credit scoring

Retail Customer behavior prediction, inventory management

Entertainment Movie and music recommendations (Netflix, Spotify)

Transportation Self-driving cars, traffic prediction, route optimization

Education Personalized learning, AI tutors, automated grading

Categories of Artificial Intelligence

AI can be classified into three broad categories based on its capabilities:

Type Description

Narrow AI AI that is specialized in one task (e.g., Alexa, Siri)

General AI AI that can perform any intellectual task a human can

Super AI Hypothetical AI that surpasses human intelligence

🔥 Fact: Currently, we are only at the Narrow AI stage.

How AI Systems Work (High-Level View)

AI systems typically follow these steps:

1. Collect Data: Gather relevant data (images, texts, numbers).

2. Train Models: Teach machines using the data.

3. Make Predictions: Use the trained model to make decisions.

4. Improve Over Time: Continuously learn from new data.

Copyright © 2025 Skill Foundry

Example:

An AI system that predicts house prices would collect data (house size, location,

price), learn patterns, and then predict prices for new houses.

Why Python is the Best Language for AI

Python is the most popular programming language for AI and Machine Learning

because:

 Simple and readable syntax (easy to focus on logic, not language details)

 Vast number of libraries (like TensorFlow, Keras, scikit-learn, OpenCV)

 Active community support (forums, tutorials, open-source projects)

 Integration capabilities (with C/C++, Java, or web applications)

Popular Python Libraries for AI Development

Library Purpose

NumPy Handling numerical operations and arrays

Pandas Data manipulation and analysis

Matplotlib Visualization of data (plots and charts)

scikit-learn Machine learning models and algorithms

TensorFlow Building and training deep learning models

OpenCV Image processing and computer vision tasks

NLTK, spaCy Natural language processing (text analysis)

Quick Example: How AI Learns from Data

Let's imagine you want an AI to recognize apples and bananas:

 You show the AI 1,000 pictures of apples and 1,000 pictures of bananas.

 The AI analyzes colors, shapes, textures, and learns what makes an apple

different from a banana.

 Later, when shown a new image, the AI predicts whether it’s an apple or a

banana.

Copyright © 2025 Skill Foundry

This is the power of learning from data instead of hardcoding rules manually.

Fun Fact:

The human brain has around 86 billion neurons. Deep learning tries to mimic the

way these neurons work — but even the best AI models today are still far simpler

than the human brain!

Summary

 AI is about making machines behave intelligently.

 Real-world AI is already present in healthcare, banking, education,

entertainment, and more.

 Python is the number one language for AI development.

 AI systems learn from data, improve over time, and make decisions.

Copyright © 2025 Skill Foundry

Setting Up AI Development Environment with

Python

Why Environment Setup is Crucial

Before we dive deep into AI coding, it’s critical to set up a professional Python

environment.

A well-organized setup will:

 Avoid errors and version conflicts

 Make your projects scalable and maintainable

 Save hours of debugging later

Step 1: Install Python (Latest Stable Version)

Python Download Page:

👉 https://www.python.org/downloads/

Recommended Version:

 Python 3.10 or above

Installation Tips:

 During installation, check the box "Add Python to PATH" — this makes

Python accessible from anywhere in your system.

Step 2: Install an Integrated Development Environment (IDE)

A good IDE helps you write clean, error-free code faster.

IDE Why Use It?

Visual Studio Code Lightweight, highly customizable, free

PyCharm Best for Python projects, intelligent suggestions

Jupyter Notebook Great for data exploration and experiments

https://www.python.org/downloads/

Copyright © 2025 Skill Foundry

Recommendation:

Start with Visual Studio Code (VS Code) — it’s beginner-friendly and powerful.

👉 Download VS Code here: https://code.visualstudio.com/

Step 3: Install Key Python Packages

After installing Python and your IDE, open a terminal (or command prompt) and

install essential AI libraries:

pip install numpy pandas matplotlib scikit-learn jupyter

notebook seaborn

Package Overview:

 numpy: Math and array operations

 pandas: Data handling

 matplotlib: Graphs and charts

 scikit-learn: Machine learning models

 jupyter notebook: For interactive AI coding

 seaborn: Beautiful data visualizations

Step 4: Set Up Virtual Environments (Best Practice)

When working on multiple AI projects, different projects might require different

versions of libraries.

This is where virtual environments come in.

How to create a virtual environment:

Install virtualenv if not already installed

pip install virtualenv

Create a new virtual environment

virtualenv myenv

Activate the environment

Windows:

myenv\Scripts\activate

macOS/Linux:

source myenv/bin/activate

Now, when you install packages, they stay inside this isolated environment.

https://code.visualstudio.com/

Copyright © 2025 Skill Foundry

Step 5: Install Jupyter Notebook for Interactive Coding

Jupyter Notebook is excellent for:

 Running code in small cells

 Writing notes and explanations alongside your code

 Visualizing data immediately

To launch Jupyter Notebook:

jupyter notebook

It will open in your web browser.

You can now create .ipynb files to code your AI experiments.

Step 6: Folder Structure for AI Projects

Organizing your project folders properly will make your life easier.

Recommended folder structure:

my_ai_project/

│

├── data/ # Datasets go here

├── notebooks/ # Jupyter notebooks

├── models/ # Saved machine learning models

├── scripts/ # Python scripts (.py files)

├── README.md # Project overview

└── requirements.txt # List of project packages

Step 7: Save Requirements for Easy Setup

Once you install all necessary packages inside your environment, save them for

future reference.

pip freeze > requirements.txt

This generates a file listing all installed libraries.

Later, anyone (including you) can install them using:

pip install -r requirements.txt

Copyright © 2025 Skill Foundry

Bonus Tip: Install Extensions for Visual Studio Code

Boost your coding experience by installing these extensions in VS Code:

 Python (Microsoft)

 Jupyter (Microsoft)

 Pylance (for fast IntelliSense)

 Code Runner (to quickly run Python files)

Troubleshooting Common Installation Problems

Problem Solution

"pip command not found"
Reinstall Python and ensure "Add to PATH" is

checked

"ModuleNotFoundError" Install the missing library using pip

Jupyter Notebook won't

launch
Reinstall using pip install notebook and retry

Summary

 Python 3.10+ should be installed correctly with PATH.

 Use Visual Studio Code + Jupyter Notebook for a smooth workflow.

 Always use virtual environments to manage project dependencies.

 Organize your folders properly for professional projects.

 Save requirements.txt files to replicate environments easily.

Copyright © 2025 Skill Foundry

Understanding Machine Learning — The Heart of

AI

What is Machine Learning?

Machine Learning (ML) is a subset of Artificial Intelligence that focuses on building

systems that can learn from data rather than being explicitly programmed.

In simple words:

Instead of writing code to tell a computer how to perform a task, we give it data and

let it figure out the best way to do the task by itself.

How Machine Learning Works (In a Nutshell)

1. Input Data → Give the machine a lot of examples (data).

2. Train Model → The machine finds patterns inside the data.

3. Make Predictions → The trained model predicts outcomes for new data.

Real-World Examples of Machine Learning

Task Machine Learning Application

Email Filtering Spam or not spam detection

Online Shopping Product recommendation engines

Banking Fraud transaction detection

Healthcare Disease diagnosis from scans

Social Media Personalized content feeds

Three Types of Machine Learning

Type Description Example

Supervised Learning
Learn from labeled data (input →

output)
Email spam detection

Copyright © 2025 Skill Foundry

Type Description Example

Unsupervised

Learning

Find hidden patterns in unlabeled

data

Customer

segmentation

Reinforcement

Learning
Learn through rewards and penalties

Training a robot to

walk

1. Supervised Learning

 Input: Data + Correct answers (labels)

 Goal: Learn a mapping from input to output

 Common Algorithms: Linear Regression, Decision Trees, Support Vector

Machines

Example:

Given 10,000 house sale records (size, location, price), predict the price of a new

house.

2. Unsupervised Learning

 Input: Only data (no labels)

 Goal: Discover hidden patterns or groupings

 Common Algorithms: K-Means Clustering, PCA (Principal Component

Analysis)

Example:

Group customers into different segments based on their buying habits — without any

predefined categories.

3. Reinforcement Learning

 Input: Agent interacts with environment

 Goal: Maximize cumulative rewards

 Common Algorithms: Q-Learning, Deep Q Networks

Example:

Teaching a self-driving car to stay on the road by giving it a "reward" for every

successful move.

Copyright © 2025 Skill Foundry

Important Terms You Should Know

Term Meaning

Training

Data
Data used to teach the machine

Testing Data New data used to test the machine's performance

Model Mathematical structure that makes predictions

Features Input variables used for prediction (e.g., size of a house)

Labels Correct outputs (e.g., price of a house)

Overfitting
When a model learns too much from training data and fails on new

data

Underfitting When a model fails to capture patterns from data

Visual Understanding of Machine Learning

Imagine you're learning to recognize apples vs bananas:

 Training Phase:

You see 1000 images — you learn bananas are yellow, apples are often red

or green.

 Testing Phase:

Someone shows you a fruit you’ve never seen before. Based on your

learning, you guess if it’s an apple or banana.

That’s exactly how ML models behave!

Key Machine Learning Algorithms You Will Learn

Algorithm Used For

Linear Regression Predicting continuous values (house prices)

Logistic Regression Binary classification (spam or not)

Decision Trees
Easy-to-understand models for classification and

regression

K-Nearest Neighbors (KNN) Classification based on closest examples

Copyright © 2025 Skill Foundry

Algorithm Used For

Support Vector Machine

(SVM)
Powerful for high-dimensional classification

K-Means Clustering Grouping data into clusters without labels

Quick Python Example: Basic Machine Learning Flow

Here’s a tiny example using scikit-learn to predict a simple pattern.

from sklearn.linear_model import LinearRegression

import numpy as np

Example Data

X = np.array([[1], [2], [3], [4], [5]]) # Features

y = np.array([2, 4, 6, 8, 10]) # Labels

Create and train model

model = LinearRegression()

model.fit(X, y)

Predict for a new input

prediction = model.predict([[6]])

print("Prediction for input 6:", prediction)

Output:

Prediction for input 6: [12.]

This means the model learned the pattern y = 2x automatically!

Myths vs Reality About Machine Learning

Myth Reality

"ML is only for geniuses" Anyone who practices can learn it

"You need huge data always" Many useful models work with small datasets

"ML models are always right" Models are just guesses — they can be wrong too!

Summary

 Machine Learning allows machines to learn from data instead of being

hardcoded.

Copyright © 2025 Skill Foundry

 There are three types: Supervised, Unsupervised, Reinforcement Learning.

 Understanding the data, features, and model selection is the key to success.

 Python makes it very easy to implement basic ML models using scikit-learn.

Copyright © 2025 Skill Foundry

Supervised Learning Deep Dive — Regression

and Classification Models

What is Supervised Learning?

Supervised Learning is when a machine learns from labeled examples — meaning,

each training input has a known correct output.

Simple Example:

You give a model data of houses (size, number of rooms) along with their prices.

The model then learns how size and rooms affect price, and later predicts prices for

new houses.

Two Major Types of Supervised Learning

Type What It Does Example

Regression Predicts continuous numbers Predicting house prices

Classification Predicts categories or classes Predicting if email is spam or not

Part 1: Regression — Predicting Continuous Values

What is Regression?

Regression is about predicting a number based on input features.

Example:

Predicting:

 House price based on size

 Salary based on years of experience

 Temperature tomorrow based on past weather data

Most Common Regression Model: Linear Regression

Understanding Linear Regression

Copyright © 2025 Skill Foundry

Linear Regression finds a straight-line relationship between the input variable(s) and

the output.

Simple formula:

y = mx + c

Where:

 y is the prediction (output)

 m is the slope (how much y changes with x)

 x is the input (feature)

 c is the intercept (where the line crosses the y-axis)

Python Example: Linear Regression

Let's predict salary based on years of experience!

import numpy as np

from sklearn.linear_model import LinearRegression

Example data: years of experience

X = np.array([[1], [2], [3], [4], [5]])

Corresponding salary (in thousands)

y = np.array([30, 35, 40, 45, 50])

Create model

model = LinearRegression()

Train model

model.fit(X, y)

Predict salary for 6 years experience

predicted_salary = model.predict([[6]])

print(f"Predicted Salary: {predicted_salary[0]}K")

Output:

Predicted Salary: 55.0K

Visualizing Linear Regression

Plotting the data points and regression line:

import matplotlib.pyplot as plt

plt.scatter(X, y, color='blue') # Data points

plt.plot(X, model.predict(X), color='red') # Regression line

plt.title('Experience vs Salary')

Copyright © 2025 Skill Foundry

plt.xlabel('Years of Experience')

plt.ylabel('Salary (K)')

plt.show()

Evaluation Metrics for Regression

Metric Meaning

Mean Absolute Error

(MAE)

Average absolute difference between predictions and

actual values

Mean Squared Error

(MSE)
Average of squared differences (penalizes bigger errors)

R² Score
How well the model explains the variability (closer to 1 is

better)

Part 2: Classification — Predicting Categories

What is Classification?

Classification is about predicting a label or category for input data.

Example:

 Predict whether an email is spam or not

 Predict whether a tumor is malignant or benign

 Predict if a customer will buy or not

Most Common Classification Model: Logistic Regression

Understanding Logistic Regression

Important: Despite its name, Logistic Regression is used for classification tasks!

It predicts probabilities between 0 and 1 using a sigmoid curve.

If probability > 0.5: Predict Class 1

If probability < 0.5: Predict Class 0

Python Example: Logistic Regression

Copyright © 2025 Skill Foundry

Predict whether a student passes an exam based on hours studied:

from sklearn.linear_model import LogisticRegression

import numpy as np

Example data

X = np.array([[1], [2], [3], [4], [5]])

0 = Fail, 1 = Pass

y = np.array([0, 0, 0, 1, 1])

Create model

model = LogisticRegression()

Train model

model.fit(X, y)

Predict for 6 hours studied

prediction = model.predict([[6]])

print(f"Prediction (0 = Fail, 1 = Pass): {prediction[0]}")

Output:

Prediction (0 = Fail, 1 = Pass): 1

Visualizing Logistic Regression

Plotting the sigmoid curve:

import matplotlib.pyplot as plt

Scatter plot of actual data

plt.scatter(X, y, color='blue')

Plot the logistic curve

import numpy as np

X_test = np.linspace(0, 7, 300)

y_prob = model.predict_proba(X_test.reshape(-1,1))[:,1]

plt.plot(X_test, y_prob, color='red')

plt.title('Hours Studied vs Passing Probability')

plt.xlabel('Hours Studied')

plt.ylabel('Probability of Passing')

plt.show()

Evaluation Metrics for Classification

Metric Meaning

Accuracy Percentage of correct predictions

Copyright © 2025 Skill Foundry

Metric Meaning

Precision Correct positive predictions out of total predicted positives

Recall Correct positive predictions out of all actual positives

F1 Score Harmonic mean of precision and recall

Confusion Matrix Table showing TP, TN, FP, FN

When to Use Regression vs Classification?

Goal Use

Predicting a continuous number Regression

Predicting a category or label Classification

Summary

 Supervised Learning = training with labeled data.

 Regression predicts continuous values (e.g., price, salary).

 Classification predicts categories (e.g., spam or not).

 Linear Regression for regression problems, Logistic Regression for

classification problems.

 Model evaluation is crucial to assess performance.

Copyright © 2025 Skill Foundry

Unsupervised Learning Deep Dive — Discovering

Hidden Patterns

What is Unsupervised Learning?

In Unsupervised Learning, the model is given unlabeled data — meaning, no

correct answers are provided.

The model tries to find patterns, structures, or groupings within the data on its

own.

Simple Real-Life Examples:

 Grouping customers based on purchasing behavior.

 Organizing similar news articles together.

 Detecting frauds or unusual patterns in bank transactions.

Key Techniques in Unsupervised Learning

Technique What It Does Example

Clustering
Group similar data points

into clusters

Grouping customers into

segments

Dimensionality

Reduction

Simplify data by reducing

features

Compressing images, speeding

up models

Part 1: Clustering — Grouping Data

What is Clustering?

Clustering is about grouping similar things together without being told which

group is correct.

Example:

Grouping customers based on age and spending habits without telling the model in

advance who belongs where.

Most Common Clustering Algorithm: K-Means Clustering

Copyright © 2025 Skill Foundry

Understanding K-Means Clustering

K-Means algorithm tries to partition data into K clusters where each data point

belongs to the cluster with the nearest mean.

How K-Means works:

1. Choose number of clusters (K).

2. Randomly place K cluster centers.

3. Assign each point to the nearest cluster center.

4. Move cluster centers to the average position of points assigned to them.

5. Repeat steps 3-4 until centers stabilize.

Visual Example

Imagine you have points scattered on a sheet.

K-Means will:

 Form groups of close points together.

 Place a center inside each group.

Python Example: K-Means Clustering

Let's group customers based on their age and spending score!

import numpy as np

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

Example customer data: [Age, Spending Score]

X = np.array([

 [25, 50],

 [30, 60],

 [22, 55],

 [40, 90],

 [42, 100],

 [41, 95],

 [20, 20],

 [21, 25],

 [23, 18]

])

Create KMeans model with 3 clusters

Copyright © 2025 Skill Foundry

kmeans = KMeans(n_clusters=3, random_state=0)

kmeans.fit(X)

Predict cluster for each data point

labels = kmeans.labels_

Plot clusters

plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')

plt.scatter(kmeans.cluster_centers_[:,0],

kmeans.cluster_centers_[:,1], color='red', marker='X', s=200)

plt.title('Customer Segments')

plt.xlabel('Age')

plt.ylabel('Spending Score')

plt.show()

How to Choose the Best K?

Use the Elbow Method:

 Try different values of K (e.g., 1 to 10).

 Plot K vs Within-Cluster Sum of Squares (WCSS).

 Look for a point where adding another cluster doesn't improve much — the

"elbow".

Elbow Method Example:

wcss = []

for k in range(1, 11):

 kmeans = KMeans(n_clusters=k, random_state=0)

 kmeans.fit(X)

 wcss.append(kmeans.inertia_)

plt.plot(range(1, 11), wcss)

plt.title('Elbow Method')

plt.xlabel('Number of clusters (K)')

plt.ylabel('WCSS')

plt.show()

Look for the "bend" in the curve — that's your ideal K!

Part 2: Dimensionality Reduction — Simplifying Data

What is Dimensionality Reduction?

Copyright © 2025 Skill Foundry

It means reducing the number of input features while preserving as much

information as possible.

Example:

Reducing a 1000-feature image into just 2 or 3 features for visualization.

Why Do We Need Dimensionality Reduction?

 Makes visualization possible (2D or 3D).

 Speeds up machine learning models.

 Removes noise from the data.

 Prevents overfitting.

Most Common Technique: Principal Component Analysis (PCA)

Understanding PCA

PCA transforms the data into a new set of dimensions (called principal components)

that best capture the variance (spread) in the data.

 First Principal Component: The direction with maximum variance.

 Second Principal Component: Perpendicular to the first, with next highest

variance.

Python Example: PCA

Let's reduce customer data from 2D to 2D (for demonstration):

from sklearn.decomposition import PCA

Using the same customer data X

pca = PCA(n_components=2)

X_pca = pca.fit_transform(X)

print(X_pca)

PCA is more powerful when dealing with higher dimensions (e.g., 100s of

features).

Summary

Copyright © 2025 Skill Foundry

 Unsupervised Learning finds patterns in unlabeled data.

 Clustering groups similar points; K-Means is the most famous method.

 The Elbow Method helps find the best number of clusters.

 Dimensionality Reduction simplifies data, makes visualization easier.

 PCA is a powerful tool to reduce the number of features.

Copyright © 2025 Skill Foundry

Neural Networks Fundamentals — Building Brains

for AI

What is a Neural Network?

A Neural Network is a computer system inspired by the human brain.

It tries to learn patterns from data by simulating how a brain's neurons work.

Think of it like layers of math operations that gradually learn to predict or classify

things.

Real-Life Examples of Neural Networks:

 Recognizing faces in photos.

 Translating languages automatically.

 Predicting stock market trends.

 Identifying spam emails.

Anatomy of a Neural Network

A basic Neural Network has:

Part What It Does

Input Layer Receives the raw data

Hidden Layers Processes and transforms the data

Output Layer Gives the final result

Visual Structure

Input Layer ➔ Hidden Layer(s) ➔ Output Layer

Each layer is made up of neurons (also called nodes).

Understanding a Single Neuron

A Neuron in a network:

 Takes inputs (numbers).

Copyright © 2025 Skill Foundry

 Multiplies each input by a weight.

 Adds a bias.

 Applies an activation function to decide the output.

Simple Formula:

Output = ActivationFunction((Weight1 × Input1) + (Weight2 ×

Input2) + ... + Bias)

Activation Functions

Activation functions decide if a neuron should fire (activate) or not.

Common types:

Activation Function Shape Purpose

Sigmoid S-curve Good for probabilities

ReLU (Rectified Linear Unit) Linear for positive values Very fast and popular

Tanh S-curve (centered at 0) Used in old networks

Most popular today:

✅ ReLU for hidden layers

✅ Sigmoid or Softmax for output layers

Building Your First Neural Network with Python (Using Keras)

We will use TensorFlow and Keras, which make building neural networks very easy.

Install libraries if you haven't already:

pip install tensorflow

Python Example: Basic Neural Network

Suppose you want to predict if a student will pass or fail based on hours studied.

import tensorflow as tf

from tensorflow import keras

import numpy as np

Copyright © 2025 Skill Foundry

Input data (hours studied)

X = np.array([[1], [2], [3], [4], [5]], dtype=float)

Output labels (0 = Fail, 1 = Pass)

y = np.array([[0], [0], [0], [1], [1]], dtype=float)

Build a simple model

model = keras.Sequential([

 keras.layers.Dense(units=1, input_shape=[1],

activation='sigmoid')

])

Compile the model

model.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['accuracy'])

Train the model

model.fit(X, y, epochs=500)

Test the model

print(model.predict(np.array([[1.5], [3.5]])))

Understanding This Code:

 Dense Layer: Fully connected layer of neurons.

 Activation: Sigmoid (because output is 0 or 1).

 Loss Function: Binary Cross-Entropy (good for binary classification).

 Optimizer: Adam (advanced optimization algorithm).

How Neural Networks Learn?

They learn through a process called Backpropagation:

 Calculate how wrong the prediction is (error).

 Adjust the weights and biases slightly to reduce the error.

 Repeat this process many times (epochs).

Important Terms to Know:

Term Meaning

Epoch One complete pass through the training data

Copyright © 2025 Skill Foundry

Term Meaning

Loss How wrong the model's prediction is

Optimizer Algorithm that updates weights

Learning Rate How big the weight adjustments are

Summary

 Neural Networks simulate the brain to learn patterns from data.

 They consist of input, hidden, and output layers.

 Neurons perform weighted math operations and use activation functions.

 We can build simple neural networks easily using TensorFlow and Keras.

 Neural networks learn by adjusting weights using backpropagation.

Copyright © 2025 Skill Foundry

Project — Build a Neural Network to Classify

Handwritten Digits
Goal of This Project

We will build a neural network that can recognize handwritten digits (0–9) using

the famous MNIST dataset.

What is the MNIST Dataset?

The MNIST dataset is a collection of 70,000 grayscale images of handwritten digits

from 0 to 9:

 Each image is 28x28 pixels (i.e., 784 features).

 It’s a classic dataset used to test and learn image classification techniques.

What We'll Learn:

 How to load and preprocess image data.

 How to build a multi-layer neural network.

 How to train, evaluate, and test the model.

 How to predict custom digits using Python.

Step 1: Import Required Libraries

import tensorflow as tf

from tensorflow import keras

import matplotlib.pyplot as plt

Step 2: Load the MNIST Dataset

Keras gives us MNIST built-in — no download required.

Load the dataset

(x_train, y_train), (x_test, y_test) =

keras.datasets.mnist.load_data()

Step 3: Visualize the Data

Copyright © 2025 Skill Foundry

Let's see the first image:

plt.imshow(x_train[0], cmap='gray')

plt.title(f"Label: {y_train[0]}")

plt.show()

Step 4: Normalize the Data

Always normalize image pixel values to make the model learn better.

x_train = x_train / 255.0

x_test = x_test / 255.0

Step 5: Build the Neural Network Model

We will use:

 An input layer that flattens 28x28 pixels into 784.

 Two hidden layers with ReLU.

 An output layer with 10 neurons (for 0–9) using Softmax.

model = keras.Sequential([

 keras.layers.Flatten(input_shape=(28, 28)),

 keras.layers.Dense(128, activation='relu'),

 keras.layers.Dense(64, activation='relu'),

 keras.layers.Dense(10, activation='softmax') # 10 output

classes

])

Step 6: Compile the Model

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

Step 7: Train the Model

model.fit(x_train, y_train, epochs=5)

Tip: You can increase epochs to improve accuracy if needed.

Step 8: Evaluate the Model on Test Data

Copyright © 2025 Skill Foundry

test_loss, test_accuracy = model.evaluate(x_test, y_test)

print(f"Test accuracy: {test_accuracy}")

Step 9: Make Predictions

predictions = model.predict(x_test)

Predict the first test image

import numpy as np

predicted_label = np.argmax(predictions[0])

print(f"Predicted: {predicted_label}")

plt.imshow(x_test[0], cmap='gray')

plt.show()

Step 10: Predict Your Own Digit (Bonus)

You can draw a digit using any drawing app, resize it to 28x28 pixels, and use it like

this:

from PIL import Image

import numpy as np

Load your own digit image (must be 28x28 and grayscale)

image = Image.open('my_digit.png').convert('L')

image = image.resize((28, 28))

image_array = np.array(image) / 255.0

Reshape for model input

image_array = image_array.reshape(1, 28, 28)

Predict

prediction = model.predict(image_array)

print("Predicted Digit:", np.argmax(prediction))

Summary

 You just built your first AI project using real-world data!

 You used TensorFlow + Keras to create a neural network.

 You trained it to recognize digits with high accuracy.

 You learned how to visualize predictions and test custom images.

Copyright © 2025 Skill Foundry

Deep Learning for Image Classification — CNNs

Explained

What is a Convolutional Neural Network (CNN)?

A Convolutional Neural Network (CNN) is a specialized type of neural network

used for processing grid-like data such as images. CNNs are powerful because

they can automatically learn spatial hierarchies of features (like edges, textures, and

shapes) from images.

Why CNNs for Image Classification?

Traditional neural networks (fully connected networks) struggle with images because

the number of parameters increases dramatically. CNNs overcome this by using

shared weights and local receptive fields, making them efficient and scalable for

image tasks.

CNN Layers — A Breakdown

A CNN typically consists of several types of layers:

1. Convolutional Layers:

These layers perform a convolution operation, using filters (also called

kernels) to detect features such as edges, textures, and shapes.

2. Pooling Layers:

These layers reduce the dimensions of the data, keeping only the most

important information. Max Pooling is the most common method.

3. Fully Connected (FC) Layers:

These are traditional neural network layers that classify the features extracted

by the convolution and pooling layers.

4. Activation Functions:

Just like in a normal neural network, CNNs use ReLU or Softmax to introduce

non-linearity.

CNN Architecture

A typical CNN consists of alternating layers of Convolution and Pooling followed by

one or more Fully Connected Layers.

Copyright © 2025 Skill Foundry

Input Image ➔ Convolution Layer ➔ Pooling Layer ➔

Convolution Layer ➔ Pooling Layer ➔ Fully Connected Layer ➔

Output

Example: Building a Simple CNN for Image Classification

Let’s create a simple CNN for classifying images from the MNIST dataset.

Step 1: Import Libraries

import tensorflow as tf

from tensorflow import keras

import matplotlib.pyplot as plt

Step 2: Load and Prepare the Data

We’ll use the MNIST dataset again, but this time we'll reshape the data for a CNN.

Load the dataset

(x_train, y_train), (x_test, y_test) =

keras.datasets.mnist.load_data()

Normalize the data

x_train = x_train / 255.0

x_test = x_test / 255.0

Reshape for CNN input (28x28x1) -> 1 color channel

(grayscale)

x_train = x_train.reshape(-1, 28, 28, 1)

x_test = x_test.reshape(-1, 28, 28, 1)

Step 3: Build the CNN Model

Now, let’s define the layers of the CNN.

model = keras.Sequential([

 keras.layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(28, 28, 1)),

 keras.layers.MaxPooling2D((2, 2)),

 keras.layers.Conv2D(64, (3, 3), activation='relu'),

 keras.layers.MaxPooling2D((2, 2)),

 keras.layers.Flatten(),

 keras.layers.Dense(64, activation='relu'),

 keras.layers.Dense(10, activation='softmax') # 10 output

classes

])

Copyright © 2025 Skill Foundry

Step 4: Compile the Model

We’ll use Adam optimizer and Sparse Categorical Crossentropy for multi-class

classification.

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

Step 5: Train the Model

Let’s train the CNN model on the MNIST data.

model.fit(x_train, y_train, epochs=5)

Step 6: Evaluate the Model

We’ll check how well the model performs on the test data.

test_loss, test_accuracy = model.evaluate(x_test, y_test)

print(f"Test accuracy: {test_accuracy}")

Step 7: Make Predictions

Now we can use the trained model to predict some digits.

predictions = model.predict(x_test)

Predict the first test image

predicted_label = np.argmax(predictions[0])

print(f"Predicted: {predicted_label}")

plt.imshow(x_test[0], cmap='gray')

plt.title(f"Predicted: {predicted_label}")

plt.show()

Key Concepts in CNNs:

1. Convolution: This operation extracts features (like edges, corners, textures).

2. Max Pooling: This reduces the image size by taking the maximum value in a

region, keeping important features.

3. Flattening: Converts the 2D image data into a 1D vector to feed into fully

connected layers.

Copyright © 2025 Skill Foundry

4. Fully Connected Layers: Use the extracted features to make final

classifications.

Summary

 CNNs are specialized networks for processing images, recognizing patterns

like edges and textures.

 They are made of Convolutional layers, Pooling layers, and Fully

Connected layers.

 CNNs are efficient for image classification tasks because they reduce the

number of parameters compared to fully connected networks.

 You built your first CNN model to classify MNIST digits and achieved high

accuracy!

Copyright © 2025 Skill Foundry

Advanced Image Classification — Transfer

Learning

What is Transfer Learning?

Transfer Learning is a powerful technique where we reuse a pre-trained model —

a model that has been already trained on a large dataset — and adapt it to a new,

related task.

Instead of starting from scratch, we transfer the learning from a large, general

dataset (like ImageNet with millions of images) to solve a smaller, specific problem.

Why Use Transfer Learning?

 Saves Time and Resources: Training a deep neural network from scratch

can take days or weeks. Transfer learning allows you to get great results in

just a few minutes or hours.

 Better Accuracy: Pre-trained models have learned powerful feature

representations that help improve accuracy on small datasets.

 Less Data Needed: You don’t need millions of labeled examples anymore!

Popular Pre-trained Models

Here are some popular models often used for transfer learning:

 VGG16

 ResNet50

 InceptionV3

 MobileNet

These models have been trained on massive datasets like ImageNet (over 14 million

images!).

How Does Transfer Learning Work?

Usually, you follow these two steps:

1. Freeze the convolutional base (pre-trained part) so its weights are not

updated.

Copyright © 2025 Skill Foundry

2. Add and train new layers on top to fit your specific task.

Visual:

Pre-trained Layers (Frozen) ➔ New Layers (Trainable) ➔ Output

Example: Using VGG16 for Image Classification

We’ll use the VGG16 model pre-trained on ImageNet and adapt it to classify images.

Step 1: Import Libraries

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers, models

Step 2: Load Pre-trained VGG16 Model

We load VGG16 without the top classification layer, keeping only the convolutional

base.

Load VGG16 without top layer

base_model = keras.applications.VGG16(weights='imagenet',

include_top=False, input_shape=(150, 150, 3))

Freeze the base model

base_model.trainable = False

Step 3: Add Custom Layers

Now, let’s add new trainable layers on top.

model = models.Sequential([

 base_model,

 layers.Flatten(),

 layers.Dense(256, activation='relu'),

 layers.Dense(1, activation='sigmoid') # Binary

classification (can be changed)

])

Step 4: Compile the Model

model.compile(optimizer='adam',

 loss='binary_crossentropy',

 metrics=['accuracy'])

Copyright © 2025 Skill Foundry

Step 5: Prepare Your Dataset

You should have your images organized like this:

dataset/

 train/

 class1/

 class2/

 validation/

 class1/

 class2/

We’ll load them using ImageDataGenerator.

from tensorflow.keras.preprocessing.image import

ImageDataGenerator

train_datagen = ImageDataGenerator(rescale=1./255)

val_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(

 'dataset/train/',

 target_size=(150, 150),

 batch_size=32,

 class_mode='binary'

)

val_generator = val_datagen.flow_from_directory(

 'dataset/validation/',

 target_size=(150, 150),

 batch_size=32,

 class_mode='binary'

)

Step 6: Train the Model

history = model.fit(

 train_generator,

 epochs=5,

 validation_data=val_generator

)

Step 7: Evaluate and Fine-tune (Optional)

Once the custom layers are trained, you can unfreeze some of the top layers of the

base model to fine-tune.

Copyright © 2025 Skill Foundry

base_model.trainable = True

Re-compile the model with a very low learning rate

model.compile(optimizer=keras.optimizers.Adam(learning_rate=1e

-5),

 loss='binary_crossentropy',

 metrics=['accuracy'])

Fine-tune

model.fit(

 train_generator,

 epochs=3,

 validation_data=val_generator

)

Important Tips for Transfer Learning:

 Always start by freezing the base model first.

 Train only the custom layers initially.

 Later, fine-tune the base model with a very small learning rate to avoid

destroying its pre-trained weights.

Summary

 Transfer Learning allows you to reuse powerful pre-trained models and

adapt them for your tasks.

 It saves huge amounts of time and delivers better results with less data.

 You built an image classification system using VGG16 pre-trained on

ImageNet.

 You learned how to freeze, add new layers, train, and even fine-tune

models.

Copyright © 2025 Skill Foundry

Natural Language Processing (NLP) Basics with

Python

What is Natural Language Processing (NLP)?

Natural Language Processing (NLP) is a branch of Artificial Intelligence that helps

machines understand, interpret, and generate human language.

With NLP, computers can:

 Understand emails, chat messages, articles.

 Translate languages (like Google Translate).

 Analyze customer reviews.

 Generate human-like text.

Common NLP Tasks

Here are some popular tasks in NLP:

 Text Classification: Classify emails into spam or not spam.

 Sentiment Analysis: Detect if a review is positive, negative, or neutral.

 Machine Translation: Translate text between languages.

 Chatbots: Build conversational systems that can chat with users.

 Summarization: Automatically create a summary of a long article.

NLP in Real Life

 Siri and Alexa understanding your commands.

 Grammarly correcting your grammar.

 Google Search suggesting relevant results.

 Netflix recommending movies based on reviews.

Step 1: Install Necessary Libraries

We'll use NLTK — a popular Python library for basic NLP tasks.

Install it using pip:

Copyright © 2025 Skill Foundry

pip install nltk

Step 2: Basic NLP Operations with NLTK

Let’s learn some core NLP concepts: Tokenization, Stopwords Removal, and

Stemming.

2.1 Tokenization

Tokenization is the process of breaking text into smaller parts (tokens) like words

or sentences.

Example:

import nltk

nltk.download('punkt') # Download the tokenizer models

from nltk.tokenize import word_tokenize

text = "Python is awesome! Let's learn AI."

tokens = word_tokenize(text)

print(tokens)

Output:

['Python', 'is', 'awesome', '!', 'Let', "'s", 'learn', 'AI',

'.']

2.2 Stopwords Removal

Stopwords are very common words (like "is", "the", "a") that carry little meaning.

Removing them makes text analysis more meaningful.

nltk.download('stopwords')

from nltk.corpus import stopwords

stop_words = set(stopwords.words('english'))

filtered_tokens = [word for word in tokens if word.lower() not

in stop_words]

print(filtered_tokens)

Output:

Copyright © 2025 Skill Foundry

['Python', 'awesome', 'Let', "'s", 'learn', 'AI', '.']

2.3 Stemming

Stemming reduces words to their root form.

Example: "playing", "played", and "plays" become "play".

from nltk.stem import PorterStemmer

stemmer = PorterStemmer()

words = ["playing", "played", "plays", "player"]

stems = [stemmer.stem(word) for word in words]

print(stems)

Output:

['play', 'play', 'play', 'player']

Step 3: Build a Simple Sentiment Analyzer

Let's use what we learned to create a very basic sentiment analyzer!

Define Positive and Negative Words

positive_words = ["good", "great", "awesome", "fantastic",

"love", "happy"]

negative_words = ["bad", "terrible", "awful", "hate",

"horrible", "sad"]

Write the Analyzer

def simple_sentiment_analyzer(text):

 tokens = word_tokenize(text.lower())

 pos_count = sum(1 for word in tokens if word in

positive_words)

 neg_count = sum(1 for word in tokens if word in

negative_words)

 if pos_count > neg_count:

 return "Positive Sentiment"

 elif neg_count > pos_count:

 return "Negative Sentiment"

 else:

Copyright © 2025 Skill Foundry

 return "Neutral Sentiment"

Test It

text1 = "I love Python, it's awesome!"

text2 = "I hate bugs, they are terrible!"

print(simple_sentiment_analyzer(text1)) # Positive Sentiment

print(simple_sentiment_analyzer(text2)) # Negative Sentiment

Important: Real Sentiment Analysis is More Complex

Our analyzer is simple for learning purposes.

Real-world models use:

 Machine Learning (e.g., Logistic Regression, SVM).

 Deep Learning (e.g., LSTM, Transformers).

 Huge datasets for training.

We will touch on machine learning-based NLP soon!

Summary

 NLP allows machines to interact with human language.

 You learned basic operations: Tokenization, Stopword Removal,

Stemming.

 You built a basic sentiment analyzer using simple word lists.

Copyright © 2025 Skill Foundry

Spam Detection Using Machine Learning

What is Spam Detection?

Spam detection is one of the most practical and common applications of machine

learning today.

It helps automatically identify unwanted or harmful emails and messages.

Every time you see your "Spam" folder filled with junk emails — that's AI at work!

In this chapter, you’ll learn how to build a basic spam detector using Python and

machine learning.

How Spam Detection Works

Spam detection is typically treated as a binary classification problem:

 Spam (1) or

 Not Spam (0)

We train a machine learning model to classify incoming text (like an email) into these

two categories based on features like:

 Words present

 Frequency of words

 Email metadata

Key Steps in Building a Spam Classifier

1. Data Collection

Gather labeled datasets of spam and non-spam emails/messages.

Example: The classic SMS Spam Collection dataset.

2. Text Preprocessing

Clean and transform the text data:

o Lowercasing

o Removing punctuation

o Removing stopwords (common useless words like "the", "and", "is")

o Tokenization (splitting text into words)

Copyright © 2025 Skill Foundry

3. Feature Extraction

Convert the text into numbers that a machine learning model can understand.

Common technique: TF-IDF (Term Frequency - Inverse Document

Frequency).

4. Model Training

Train a classification algorithm, such as:

o Logistic Regression

o Naive Bayes

o Support Vector Machine (SVM)

5. Model Evaluation

Test the model’s performance on new unseen data using metrics like:

o Accuracy

o Precision

o Recall

o F1 Score

Example Code: Building a Basic Spam Detector

Install required libraries

pip install scikit-learn pandas

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score

Load dataset

data = pd.read_csv('spam.csv', encoding='latin-1')

data = data[['v1', 'v2']]

data.columns = ['label', 'text']

Encode labels

data['label_num'] = data.label.map({'ham': 0, 'spam': 1})

Split data

X_train, X_test, y_train, y_test = train_test_split(

 data['text'], data['label_num'], test_size=0.2,

random_state=42)

Feature extraction

vectorizer = TfidfVectorizer()

Copyright © 2025 Skill Foundry

X_train_vec = vectorizer.fit_transform(X_train)

X_test_vec = vectorizer.transform(X_test)

Train model

model = MultinomialNB()

model.fit(X_train_vec, y_train)

Predict and evaluate

y_pred = model.predict(X_test_vec)

print(f"Accuracy: {accuracy_score(y_test, y_pred)}")

Summary

 Spam detection is a real-world example of binary classification.

 Text preprocessing and feature extraction are key steps.

 Naive Bayes is a strong and simple model for spam detection tasks.

Copyright © 2025 Skill Foundry

Deep Learning for Text Classification (with NLP)
Why Use Deep Learning for Text?

Traditional machine learning methods (like Naive Bayes) work well for small

datasets.

However, for larger, more complex text data, Deep Learning models like RNNs

(Recurrent Neural Networks) and LSTMs (Long Short-Term Memory networks)

perform much better.

Deep learning models can capture:

 The sequence of words

 Contextual meaning behind the text

 Long-range dependencies (words that are connected even if far apart)

Important Deep Learning Architectures for Text

 RNN (Recurrent Neural Network)

Designed to handle sequential data. It processes one word at a time and

keeps track of past words.

 LSTM (Long Short-Term Memory)

An improved version of RNN that solves the "short-term memory" problem.

LSTMs are great at remembering information for long periods.

 GRU (Gated Recurrent Unit)

A simpler and faster variant of LSTM, used in some cases.

Text Classification Pipeline with Deep Learning

1. Prepare the Text Data

o Clean text (lowercase, remove special characters)

o Tokenize (convert text to sequences of numbers)

o Pad sequences to ensure equal length inputs

2. Build the Deep Learning Model

o Use an Embedding Layer to learn word representations

o Add LSTM or GRU layers

o Add Dense (fully connected) layers for output

3. Train and Evaluate the Model

Copyright © 2025 Skill Foundry

o Use appropriate loss functions (like binary cross-entropy)

o Evaluate using accuracy, precision, recall, etc.

Example Code: Text Classification using LSTM

Install required libraries

pip install tensorflow keras

import numpy as np

import pandas as pd

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import

pad_sequences

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, LSTM, Dense

Load and preprocess dataset

data = pd.read_csv('spam.csv', encoding='latin-1')

data = data[['v1', 'v2']]

data.columns = ['label', 'text']

Encode labels

data['label_num'] = data.label.map({'ham': 0, 'spam': 1})

Prepare text data

tokenizer = Tokenizer()

tokenizer.fit_on_texts(data['text'])

sequences = tokenizer.texts_to_sequences(data['text'])

padded_sequences = pad_sequences(sequences, padding='post')

Split data

X = padded_sequences

y = data['label_num'].values

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Build LSTM model

model = Sequential([

 Embedding(input_dim=len(tokenizer.word_index) + 1,

output_dim=64),

 LSTM(64),

 Dense(1, activation='sigmoid')

])

model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

Copyright © 2025 Skill Foundry

model.fit(X_train, y_train, epochs=5, validation_data=(X_test,

y_test))

Evaluate model

loss, accuracy = model.evaluate(X_test, y_test)

print(f"Test Accuracy: {accuracy}")

Key Points to Remember

 Always preprocess text properly (tokenization, padding).

 Use an Embedding layer before feeding text into LSTM/GRU.

 Tune the number of LSTM units, batch size, and epochs for better results.

 Deep learning models usually require more data and computation power.

Real-World Applications

Deep Learning for text classification powers:

 Spam filters

 Sentiment analysis

 Product reviews categorization

 Fake news detection

 Customer support ticket sorting

Copyright © 2025 Skill Foundry

Computer Vision Basics and Image Classification

What is Computer Vision?

Computer Vision (CV) is a field of Artificial Intelligence (AI) that enables machines

to see, understand, and analyze images or videos — just like humans.

The goal of Computer Vision is to train computers to extract meaningful information

from visual data, so they can perform tasks like:

 Recognizing faces

 Detecting objects

 Understanding scenes

 Reading handwritten text

 Driving autonomous cars

In simple words:

👉 Computer Vision = Teaching computers how to “see” and “think” about

images.

Why is Computer Vision Important?

Computer Vision powers some of the most exciting innovations in today's world:

 Face ID unlocking your smartphone

 Self-driving cars understanding their surroundings

 Medical imaging systems diagnosing diseases

 Retail checkout-free stores recognizing items automatically

 Security cameras detecting suspicious activity

It has become a core technology for industries like healthcare, automotive, finance,

agriculture, and entertainment.

How Computers See Images

Humans see images as a complete picture, but computers see images as arrays of

numbers.

For example, a grayscale image can be represented as a matrix where:

 Each pixel value ranges from 0 (black) to 255 (white).

Copyright © 2025 Skill Foundry

For colored images (RGB):

 3 matrices are used — Red, Green, and Blue channels.

Example: An image of size 100x100 pixels will be represented as:

 For grayscale: 100x100 matrix

 For RGB color: 100x100x3 matrix

These numerical values allow computers to apply mathematical operations to

understand patterns inside images.

Basic Tasks in Computer Vision

Task Description Example

Image

Classification

Identify the main object in an

image.
"This is a dog."

Object Detection
Detect multiple objects and their

locations.
"There is a cat and a dog."

Image

Segmentation

Label each pixel according to the

object it belongs to.

"This pixel belongs to a cat,

this one to a dog."

Face

Recognition
Identify who is in the image. "This is John Doe."

Pose Estimation Detect human body keypoints.
"This is the arm, this is the

leg."

In this chapter, we will focus on Image Classification, the foundation of Computer

Vision.

What is Image Classification?

Image Classification means teaching a computer to categorize images into

predefined classes.

For example:

 Given an image of an animal, the model should say whether it is a dog, cat,

or horse.

The basic steps are:

1. Input: An image.

Copyright © 2025 Skill Foundry

2. Output: A predicted label (class) from a set of known categories.

How to Build an Image Classifier

Step 1: Prepare the Dataset

 Collect labeled images for each category.

 Example dataset: CIFAR-10 (contains 60,000 images of 10 classes like

airplane, car, bird, etc.)

Step 2: Preprocess the Images

 Resize images to the same dimension.

 Normalize pixel values (0–255 → 0–1) for faster training.

Step 3: Build the Model

 Use a Deep Learning model, typically Convolutional Neural Networks

(CNNs).

Step 4: Train the Model

 Feed the model with training data.

 Use a loss function and an optimizer to improve model accuracy.

Step 5: Evaluate the Model

 Test the model with unseen data.

 Measure accuracy, precision, recall, etc.

Introduction to Convolutional Neural Networks (CNNs)

CNNs are a special type of neural network designed for processing images.

Key Layers of a CNN:

 Convolution Layer: Extracts features like edges, colors, textures.

 Pooling Layer: Reduces the spatial size to speed up computation.

 Fully Connected Layer: Makes the final decision about the class.

CNNs are highly effective because they automatically learn important features

from images, reducing the need for manual feature engineering.

Example Code: Simple Image Classification using CNN

Copyright © 2025 Skill Foundry

Install TensorFlow if not already installed

pip install tensorflow

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

Load CIFAR-10 dataset

(train_images, train_labels), (test_images, test_labels) =

datasets.cifar10.load_data()

Normalize pixel values

train_images, test_images = train_images / 255.0, test_images

/ 255.0

Class names

class_names = ['airplane', 'automobile', 'bird', 'cat',

'deer',

 'dog', 'frog', 'horse', 'ship', 'truck']

Build CNN model

model = models.Sequential([

 layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(32, 32, 3)),

 layers.MaxPooling2D((2, 2)),

 layers.Conv2D(64, (3, 3), activation='relu'),

 layers.MaxPooling2D((2, 2)),

 layers.Conv2D(64, (3, 3), activation='relu'),

 layers.Flatten(),

 layers.Dense(64, activation='relu'),

 layers.Dense(10)

])

Compile model

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits

=True),

 metrics=['accuracy'])

Train model

history = model.fit(train_images, train_labels, epochs=10,

 validation_data=(test_images,

test_labels))

Evaluate model

test_loss, test_acc = model.evaluate(test_images, test_labels,

verbose=2)

Copyright © 2025 Skill Foundry

print(f"Test Accuracy: {test_acc}")

Tips for Better Image Classification

 Use Data Augmentation: Randomly flip, rotate, zoom images during training

to make the model generalize better.

 Use Transfer Learning: Use pre-trained models like ResNet, VGG,

MobileNet for faster and better performance.

 Regularization: Techniques like Dropout can help prevent overfitting.

Real-World Applications

 Identifying plant diseases in agriculture

 Sorting packages in warehouses

 Medical diagnosis from X-rays and MRIs

 Self-driving cars understanding road signs

 Filtering inappropriate content on social media

Copyright © 2025 Skill Foundry

AI for Automation: Files, Web, and Emails

What is Automation?

Automation means making computers perform repetitive, rule-based tasks without

human intervention.

When combined with Artificial Intelligence (AI), automation becomes even more

powerful — because now systems can not only perform tasks but also make smart

decisions.

In simple words:

👉 AI + Automation = Machines that can act and think for us.

Why is AI Automation Important?

Every industry benefits from AI automation:

 Business: Sending marketing emails automatically.

 Finance: Auto-generating reports.

 Healthcare: Scheduling patient appointments.

 Education: Auto-grading student assignments.

 Daily Life: Sorting your files, replying to emails, managing social media.

AI helps automate tasks faster, more accurately, and 24x7 without fatigue!

Where Can We Apply AI for Automation?

Area Example

File Management Auto-sorting files into folders

Web Scraping Collecting data from websites

Email Handling Auto-replying or sorting emails

Scheduling Auto-setting calendar events

Customer Support Chatbots replying to customers

Data Entry Filling forms or sheets automatically

Copyright © 2025 Skill Foundry

Tools and Libraries for AI Automation

Tool/Library Purpose

Python Core programming language

Pandas Handling data and spreadsheets

Selenium Browser automation

BeautifulSoup Web scraping

smtplib Sending emails

email (module) Building email messages

os and shutil File and folder management

PyAutoGUI GUI automation (clicks, typing, moving mouse)

✅ All of these are easy-to-use and powerful — perfect for our beginner-to-

advanced automation journey!

Automation Examples with Python

Let's now dive into real-world examples.

📁 1. Automating File Management

Problem:

Suppose your "Downloads" folder is full of random files: PDFs, images, videos, ZIP

files.

You want them sorted into separate folders automatically.

Solution:

Use Python's os and shutil modules.

import os

import shutil

Path to your downloads folder

downloads_folder = '/path/to/your/Downloads'

Copyright © 2025 Skill Foundry

List all files

files = os.listdir(downloads_folder)

for file in files:

 if file.endswith('.pdf'):

 shutil.move(os.path.join(downloads_folder, file),

'/path/to/Downloads/PDFs')

 elif file.endswith('.jpg') or file.endswith('.png'):

 shutil.move(os.path.join(downloads_folder, file),

'/path/to/Downloads/Images')

 elif file.endswith('.zip'):

 shutil.move(os.path.join(downloads_folder, file),

'/path/to/Downloads/ZIPs')

print("Files have been organized!")

✅ Result: All your files neatly sorted into folders!

🌐 2. Automating Web Tasks (Web Scraping)

Problem:

You want to collect latest news headlines from a website.

Solution:

Use requests and BeautifulSoup libraries.

import requests

from bs4 import BeautifulSoup

url = 'https://news.ycombinator.com/'

response = requests.get(url)

soup = BeautifulSoup(response.text, 'html.parser')

titles = soup.find_all('a', class_='storylink')

for idx, title in enumerate(titles[:10], 1):

 print(f"{idx}. {title.text}")

✅ Result: Prints the top 10 news headlines automatically!

📧 3. Sending Automated Emails

Problem:

You want to automatically send a "Good Morning" email to your team every day.

Solution:

Use smtplib and email modules.

import smtplib

Copyright © 2025 Skill Foundry

from email.mime.text import MIMEText

Email details

sender_email = "you@example.com"

receiver_email = "team@example.com"

password = "your-email-password"

Create email content

message = MIMEText("Good Morning Team! Have a great day

ahead.")

message['Subject'] = "Daily Greetings"

message['From'] = sender_email

message['To'] = receiver_email

Send the email

with smtplib.SMTP('smtp.gmail.com', 587) as server:

 server.starttls()

 server.login(sender_email, password)

 server.send_message(message)

print("Email sent successfully!")

✅ Result: Email is sent automatically without opening Gmail manually!

AI Enhancements to Automation

Adding AI techniques can make automation smarter.

 Smart file sorting: Automatically detect if a file is a resume, an invoice, or a

report using text classification.

 Smart web scraping: Detect and scrape dynamic content using machine

learning.

 Smart emails: Auto-classify emails as important, spam, promotions using

Natural Language Processing (NLP).

We'll explore more of these advanced techniques in upcoming chapters!

Best Practices for AI Automation

 Always test automations on sample data first.

 Handle errors (like missing files or internet issues) properly.

 Keep sensitive information like email passwords secret (use environment

variables).

 Respect website rules when scraping (use polite scraping, follow robots.txt).

Copyright © 2025 Skill Foundry

 Schedule your scripts to run automatically using cron jobs (Linux) or Task

Scheduler (Windows).

Real-World Applications of AI Automation

 Netflix: Auto-suggesting movies based on your viewing history.

 Amazon: Auto-sorting orders and inventory updates.

 Banks: Auto-detecting suspicious transactions.

 Healthcare: Auto-updating patient records.

 Social Media: Auto-moderating comments and posts.

Automation saves billions of hours every year!

Copyright © 2025 Skill Foundry

AI Chatbots and Virtual Assistants

Introduction to Chatbots and Virtual Assistants

A Chatbot is a computer program that simulates human conversation.

A Virtual Assistant is an advanced chatbot that can perform tasks based on voice

or text commands.

You have already seen many examples:

 Siri (Apple)

 Alexa (Amazon)

 Google Assistant

 ChatGPT 😉

They can understand your questions and respond intelligently — thanks to Natural

Language Processing (NLP) and Machine Learning (ML).

Why Are Chatbots Important?

Chatbots help:

 📞 Customer Service: 24x7 instant replies without human agents.

 🛍️ Shopping Assistance: Guiding users to products.

 📅 Scheduling Meetings: Booking appointments automatically.

 📚 Education: Answering student queries instantly.

 🌐 Website Support: Assisting visitors in real time.

In short:

Chatbots = Instant, intelligent service = Happy users.

How Do Chatbots Work?

Step Description

Input User sends a message (text or voice).

Understanding AI/NLP model interprets the intent behind the message.

Copyright © 2025 Skill Foundry

Step Description

Processing
Based on intent, the bot decides what to reply or what action to

perform.

Response Bot sends a meaningful answer back to the user.

✅ Simple, but extremely powerful when done correctly!

Types of Chatbots

Type Example

Rule-Based

Chatbots

Answer based on keywords ("If user says 'hello', reply 'Hi

there!'")

AI-Based Chatbots
Understands meaning, context, and replies smartly (like

ChatGPT)

We will build a simple Rule-Based Chatbot first, and later explore ideas for AI-

enhanced ones.

Building a Simple Chatbot in Python

Let’s create a basic chatbot in Python — no complicated setup needed!

Simple Rule-Based Chatbot

def chatbot_response(user_input):

 user_input = user_input.lower()

 if 'hello' in user_input or 'hi' in user_input:

 return "Hello! How can I assist you today?"

 elif 'your name' in user_input:

 return "I'm PyBot, your personal assistant."

 elif 'weather' in user_input:

 return "I'm not connected to real weather data yet,

but it's always sunny in Python land!"

 elif 'bye' in user_input:

 return "Goodbye! Have a great day!"

 else:

 return "I'm sorry, I didn't understand that. Could you

rephrase?"

Chat loop

while True:

 user_input = input("You: ")

Copyright © 2025 Skill Foundry

 if user_input.lower() == 'exit':

 print("Bot: Goodbye!")

 break

 response = chatbot_response(user_input)

 print("Bot:", response)

✅ Result:

You now have your own chatbot running inside the terminal!

How to Make Chatbots Smarter

Instead of using simple keywords, you can enhance the chatbot by:

 Natural Language Processing (NLP):

o Tokenize sentences

o Recognize intents

o Extract key entities (names, dates, places)

 Machine Learning Models:

o Train the bot on real conversations

o Predict the best response

 APIs:

o Connect to services like weather, news, jokes, translation APIs for

dynamic replies.

Example:

You say “What’s the weather today?” and the bot fetches live data from a weather

API! 🌤️

Libraries and Tools for Building AI Chatbots

Library Use

NLTK Natural Language Processing

spaCy Advanced NLP tasks

Transformers (HuggingFace) Pre-trained AI models like BERT, GPT

TensorFlow / PyTorch Deep Learning models

Copyright © 2025 Skill Foundry

Library Use

Flask / FastAPI Hosting chatbot as a web app

✅ Many are easy to learn and widely used in industry!

How to Build a Voice-Based Virtual Assistant

You can even make your bot talk and listen using:

 speech_recognition (Python library to capture voice)

 pyttsx3 (Text to speech engine)

 gTTS (Google Text-to-Speech)

Example to make Python speak:

import pyttsx3

engine = pyttsx3.init()

engine.say("Hello! I am your AI assistant.")

engine.runAndWait()

✅ Result: Your computer literally talks to you!

AI Chatbots in Real Life

Company Usage

Domino’s Pizza Chatbot for ordering pizza

HDFC Bank Eva chatbot for customer service

Google Duplex AI for phone call bookings

Spotify Chatbot for music recommendations

These real-world bots are built using exactly the principles you’re learning now!

Final Thoughts

Today, every company is either using or planning to use chatbots and virtual

assistants.

By learning how to build them with Python + AI, you are preparing yourself for:

 High-paying jobs 💸

Copyright © 2025 Skill Foundry

 Freelance projects 🎯

 Even launching your own SaaS startup 🚀

Remember:

👉 AI Chatbots are the future of communication.

	INTRODUCTION
	Setting Up AI Development Environment with Python
	Understanding Machine Learning — The Heart of AI
	Supervised Learning Deep Dive — Regression and Classification Models
	Unsupervised Learning Deep Dive — Discovering Hidden Patterns
	Neural Networks Fundamentals — Building Brains for AI
	Project — Build a Neural Network to Classify Handwritten Digits
	Deep Learning for Image Classification — CNNs Explained
	Advanced Image Classification — Transfer Learning
	Natural Language Processing (NLP) Basics with Python
	Spam Detection Using Machine Learning
	Deep Learning for Text Classification (with NLP)
	Computer Vision Basics and Image Classification
	AI for Automation: Files, Web, and Emails
	AI Chatbots and Virtual Assistants

