Dario Amodei, CEO of Anthropic, envisions a future where AI systems are not only powerful but also aligned with human values. After leaving OpenAI, Amodei co-founded Anthropic to tackle the safety challenges of AI, aiming to create systems that are both intelligent and ethical. One of the key methods Anthropic employs is “Constitutional AI,” a training approach that instills AI models with a set of core principles derived from universally accepted documents like the United Nations Declaration of Human Rights.
GaiaNet is a decentralized computing infrastructure that enables everyone to create, deploy, scale, and monetize their own AI agents that reflect their styles, values, knowledge, and expertise. It allows individuals and businesses to create AI agents. Each GaiaNet node provides
a web-based chatbot UI.
an OpenAI compatible API. See how to use a GaiaNet node as a drop-in OpenAI replacement in your favorite AI agent app.
This grounding helps increase accuracy and reduce the common issue of AI-generated inaccuracies or “hallucinations.” This technique is commonly known as “Retrieval Augmented Generation”, or RAG.
LARS aims to be the ultimate open-source RAG-centric LLM application. Towards this end, LARS takes the concept of RAG much further by adding detailed citations to every response, supplying you with specific document names, page numbers, text-highlighting, and images relevant to your question, and even presenting a document reader right within the response window. While all the citations are not always present for every response, the idea is to have at least some combination of citations brought up for every RAG response and that’s generally found to be the case.
An open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K.
The new material provides an energy density—the amount that can be squeezed into a given space—of 1,000 watt-hours per liter, which is about 100 times greater than TDK’s current battery in mass production.
TDK has 50 to 60 percent global market share in the small-capacity batteries that power smartphones and is targeting leadership in the medium-capacity market, which includes energy storage devices and larger electronics such as drones.
Blender 3 updated Intel® Open Image Denoise to version 1.4.2 which improved many artifacts in render, even separating into passes, but still loses a lot of definition when used in standard mode, DENOISER COMP separates passes and applies denoiser only in the selected passes and generates the final pass (beauty) keeping much more definition as can be seen in the videos.
1️⃣ 𝗔𝗿𝘁𝗶𝗳𝗶𝗰𝗶𝗮𝗹 𝗜𝗻𝘁𝗲𝗹𝗹𝗶𝗴𝗲𝗻𝗰𝗲 (𝗔𝗜) – The broadest category, covering automation, reasoning, and decision-making. Early AI was rule-based, but today, it’s mainly data-driven. 2️⃣ 𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 (𝗠𝗟) – AI that learns patterns from data without explicit programming. Includes decision trees, clustering, and regression models. 3️⃣ 𝗡𝗲𝘂𝗿𝗮𝗹 𝗡𝗲𝘁𝘄𝗼𝗿𝗸𝘀 (𝗡𝗡) – A subset of ML, inspired by the human brain, designed for pattern recognition and feature extraction. 4️⃣ 𝗗𝗲𝗲𝗽 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 (𝗗𝗟) – Multi-layered neural networks that drives a lot of modern AI advancements, for example enabling image recognition, speech processing, and more. 5️⃣ 𝗧𝗿𝗮𝗻𝘀𝗳𝗼𝗿𝗺𝗲𝗿𝘀 – A revolutionary deep learning architecture introduced by Google in 2017 that allows models to understand and generate language efficiently. 6️⃣ 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝘃𝗲 𝗔𝗜 (𝗚𝗲𝗻𝗔𝗜) – AI that doesn’t just analyze data—it creates. From text and images to music and code, this layer powers today’s most advanced AI models. 7️⃣ 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝘃𝗲 𝗣𝗿𝗲-𝗧𝗿𝗮𝗶𝗻𝗲𝗱 𝗧𝗿𝗮𝗻𝘀𝗳𝗼𝗿𝗺𝗲𝗿𝘀 (𝗚𝗣𝗧) – A specific subset of Generative AI that uses transformers for text generation. 8️⃣ 𝗟𝗮𝗿𝗴𝗲 𝗟𝗮𝗻𝗴𝘂𝗮𝗴𝗲 𝗠𝗼𝗱𝗲𝗹𝘀 (𝗟𝗟𝗠) – Massive AI models trained on extensive datasets to understand and generate human-like language. 9️⃣ 𝗚𝗣𝗧-4 – One of the most advanced LLMs, built on transformer architecture, trained on vast datasets to generate human-like responses. 🔟 𝗖𝗵𝗮𝘁𝗚𝗣𝗧 – A specific application of GPT-4, optimized for conversational AI and interactive use.