• Photography basics: Depth of Field and composition

    ,

    Depth of field is the range within which focusing is resolved in a photo.
    Aperture has a huge affect on to the depth of field.

     

     

    Changing the f-stops (f/#) of a lens will change aperture and as such the DOF.

    f-stops are a just certain number which is telling you the size of the aperture. That’s how f-stop is related to aperture (and DOF).

    If you increase f-stops, it will increase DOF, the area in focus (and decrease the aperture). On the other hand, decreasing the f-stop it will decrease DOF (and increase the aperture).

    The red cone in the figure is an angular representation of the resolution of the system. Versus the dotted lines, which indicate the aperture coverage. Where the lines of the two cones intersect defines the total range of the depth of field.

    This image explains why the longer the depth of field, the greater the range of clarity.

  • Methods for creating motion blur in Stop motion

    , ,

    en.wikipedia.org/wiki/Go_motion

     

    Petroleum jelly
    This crude but reasonably effective technique involves smearing petroleum jelly (“Vaseline”) on a plate of glass in front of the camera lens, also known as vaselensing, then cleaning and reapplying it after each shot — a time-consuming process, but one which creates a blur around the model. This technique was used for the endoskeleton in The Terminator. This process was also employed by Jim Danforth to blur the pterodactyl’s wings in Hammer Films’ When Dinosaurs Ruled the Earth, and by Randal William Cook on the terror dogs sequence in Ghostbusters.[citation needed]

     

    Bumping the puppet
    Gently bumping or flicking the puppet before taking the frame will produce a slight blur; however, care must be taken when doing this that the puppet does not move too much or that one does not bump or move props or set pieces.

     

    Moving the table
    Moving the table on which the model is standing while the film is being exposed creates a slight, realistic blur. This technique was developed by Ladislas Starevich: when the characters ran, he moved the set in the opposite direction. This is seen in The Little Parade when the ballerina is chased by the devil. Starevich also used this technique on his films The Eyes of the Dragon, The Magical Clock and The Mascot. Aardman Animations used this for the train chase in The Wrong Trousers and again during the lorry chase in A Close Shave. In both cases the cameras were moved physically during a 1-2 second exposure. The technique was revived for the full-length Wallace & Gromit: The Curse of the Were-Rabbit.

     

    Go motion
    The most sophisticated technique was originally developed for the film The Empire Strikes Back and used for some shots of the tauntauns and was later used on films like Dragonslayer and is quite different from traditional stop motion. The model is essentially a rod puppet. The rods are attached to motors which are linked to a computer that can record the movements as the model is traditionally animated. When enough movements have been made, the model is reset to its original position, the camera rolls and the model is moved across the table. Because the model is moving during shots, motion blur is created.

     

    A variation of go motion was used in E.T. the Extra-Terrestrial to partially animate the children on their bicycles.

  • Rec-2020 – TVs new color gamut standard used by Dolby Vision?

    , , , ,

    https://www.hdrsoft.com/resources/dri.html#bit-depth

     

    The dynamic range is a ratio between the maximum and minimum values of a physical measurement. Its definition depends on what the dynamic range refers to.

    For a scene: Dynamic range is the ratio between the brightest and darkest parts of the scene.

    For a camera: Dynamic range is the ratio of saturation to noise. More specifically, the ratio of the intensity that just saturates the camera to the intensity that just lifts the camera response one standard deviation above camera noise.

    For a display: Dynamic range is the ratio between the maximum and minimum intensities emitted from the screen.

    The Dynamic Range of real-world scenes can be quite high — ratios of 100,000:1 are common in the natural world. An HDR (High Dynamic Range) image stores pixel values that span the whole tonal range of real-world scenes. Therefore, an HDR image is encoded in a format that allows the largest range of values, e.g. floating-point values stored with 32 bits per color channel. Another characteristics of an HDR image is that it stores linear values. This means that the value of a pixel from an HDR image is proportional to the amount of light measured by the camera.

    For TVs HDR is great, but it’s not the only new TV feature worth discussing.

    (more…)