Truly Infinite Videos This isn’t a gimmick. You can generate incredibly long videos without frying your VRAM. Perfect for podcasts, presentations, or full-on virtual influencers.
More Than Just Lips This is the best part. It doesn’t just sync the mouth; it generates realistic head movements, body posture, and facial expressions that match the audio’s emotion. It makes characters feel alive.
Keeps Everything Consistent It preserves the character’s identity, the background, and even camera movements from your original video, so everything looks seamless.
Completely Open Source & Ready for Business The code, the weights, and the paper are all out there for you to use. Best of all, it’s released under an Apache 2.0 license, which means you are free to use what you create for commercial projects!
# extract one frame at the end of a video ffmpeg -sseof -0.1 -i intro_1.mp4 -frames:v 1 -q:v 1 intro_end.jpg
-sseof -0.1: This option tells FFmpeg to seek to 0.1 seconds before the end of the file. This approach is often more reliable for extracting the last frame, especially if the video’s duration isn’t an exact multiple of the frame interval. Super User -frames:v 1: Extracts a single frame. -q:v 1: Sets the quality of the output image; 1 is the highest quality.
# extract one frame at the beginning of a video ffmpeg -i speaking_4.mp4 -frames:v 1 speaking_beginning.jpg
# check video length ffmpeg -i C:\myvideo.mp4 -f null –
# Convert mov/mp4 to animated gifEdit ffmpeg -i input.mp4 -pix_fmt rgb24 output.gif Other useful ffmpeg commandsEdit
There’s been no statements as to when Midjourney’s technology will start showing up in Meta’s products, or to what degree it will be baked into the company’s AI strategy.
Tired of having iTunes messing up your mp3 library? … Time to try MiniTunes!
– Arrange your library by Genre, Artists or Albums. – Change UI colors at will. – Edit tags and create playlists. – Consolidate your library once for all. – Windows 64 only
“Simon Willison created a Datasette browser to explore WebVid-10M, one of the two datasets used to train the video generation model, and quickly learned that all 10.7 million video clips were scraped from Shutterstock, watermarks and all.”
“In addition to the Shutterstock clips, Meta also used 10 million video clips from this 100M video dataset from Microsoft Research Asia. It’s not mentioned on their GitHub, but if you dig into the paper, you learn that every clip came from over 3 million YouTube videos.”
“It’s become standard practice for technology companies working with AI to commercially use datasets and models collected and trained by non-commercial research entities like universities or non-profits.”
“Like with the artists, photographers, and other creators found in the 2.3 billion images that trained Stable Diffusion, I can’t help but wonder how the creators of those 3 million YouTube videos feel about Meta using their work to train their new model.”
Color Temperature of a light source describes the spectrum of light which is radiated from a theoretical “blackbody” (an ideal physical body that absorbs all radiation and incident light – neither reflecting it nor allowing it to pass through) with a given surface temperature.
Or. Most simply it is a method of describing the color characteristics of light through a numerical value that corresponds to the color emitted by a light source, measured in degrees of Kelvin (K) on a scale from 1,000 to 10,000.
More accurately. The color temperature of a light source is the temperature of an ideal backbody that radiates light of comparable hue to that of the light source.