BREAKING NEWS
LATEST POSTS
-
Managers’ Guide to Effective Annual Feedback
https://peterszasz.com/engineering-managers-guide-to-effective-annual-feedback
The main goals of a regular, written feedback cycle are:
- Recognition, support for self-reflection and personal growth
- Alignment with team- and company needs
- Documentation
These promote:
- Recognize Achievements: Use the feedback process to boost morale and support self-reflection.
- Align Goals: Ensure individual contributions match company objectives.
- Document Progress: Keep a clear record of performance for future decisions.
- Prepare Feedback: Gather 360-degree feedback, focus on examples, and anticipate reactions.
- Strength-Based Approach: Focus on enhancing strengths over fixing weaknesses.
- Deliver Feedback Live: Engage in discussion before providing written feedback.
- Follow-Up: Use feedback to guide future goals and performance improvement.
-
GIL To Become Optional in Python 3.13
GIL or Global Interpreter Lock can be disabled in Python version 3.13. This is currently experimental.
What is GIL? It is a mechanism used by the CPython interpreter to ensure that only one thread executes the Python bytecode at a time.
https://medium.com/@r_bilan/python-3-13-without-the-gil-a-game-changer-for-concurrency-5e035500f0da
Advantages of the GIL
- Simplicity of Implementation: The GIL simplifies memory management in CPython by preventing concurrent access to Python objects, which can help avoid race conditions and other threading issues.
- Ease of Use for Single-Threaded Programs: For applications that are single-threaded, the GIL eliminates the overhead associated with managing thread safety, allowing for straightforward and efficient code execution.
- Compatibility with C Extensions: The GIL allows C extensions to operate without needing to implement complex threading models, which simplifies the development of Python extensions that interface with C libraries.
- Performance for I/O-Bound Tasks: In I/O-bound applications, the GIL does not significantly hinder performance since threads can be switched out during I/O operations, allowing other threads to run.
Disadvantages of the GIL
- Limited Multithreading Performance: The GIL can severely restrict the performance of CPU-bound multithreaded applications, as it only allows one thread to execute Python bytecode at a time, leading to underutilization of multicore processors.
- Thread Management Complexity: Although the GIL simplifies memory management, it can complicate the design of concurrent applications, forcing developers to carefully manage threading issues or use multiprocessing instead.
- Hindrance to Parallel Processing: With the GIL enabled, achieving true parallelism in Python applications is challenging, making it difficult for developers to leverage multicore architectures effectively.
- Inefficiency in Context Switching: Frequent context switching due to the GIL can introduce overhead, especially in applications with many threads, leading to performance degradation.
https://geekpython.in/gil-become-optional-in-python
-
Ben Gunsberger – AI generated podcast about AI using Google NotebookLM
Listen to the podcast in the post
“I just created a AI-Generated podcast by feeding an article I write into Google’s NotebookLM. If I hadn’t make it myself, I would have been 100% fooled into thinking it was real people talking.”
-
Apple releases Depth Pro – An open source AI model that rewrites the rules of 3D vision
The model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU.
https://github.com/apple/ml-depth-pro
https://arxiv.org/pdf/2410.02073
-
Anders Langlands – Render Color Spaces
https://www.colour-science.org/anders-langlands/
This page compares images rendered in Arnold using spectral rendering and different sets of colourspace primaries: Rec.709, Rec.2020, ACES and DCI-P3. The SPD data for the GretagMacbeth Color Checker are the measurements of Noburu Ohta, taken from Mansencal, Mauderer and Parsons (2014) colour-science.org.
-
Björn Ottosson – How software gets color wrong
https://bottosson.github.io/posts/colorwrong/
Most software around us today are decent at accurately displaying colors. Processing of colors is another story unfortunately, and is often done badly.
To understand what the problem is, let’s start with an example of three ways of blending green and magenta:
- Perceptual blend – A smooth transition using a model designed to mimic human perception of color. The blending is done so that the perceived brightness and color varies smoothly and evenly.
- Linear blend – A model for blending color based on how light behaves physically. This type of blending can occur in many ways naturally, for example when colors are blended together by focus blur in a camera or when viewing a pattern of two colors at a distance.
- sRGB blend – This is how colors would normally be blended in computer software, using sRGB to represent the colors.
Let’s look at some more examples of blending of colors, to see how these problems surface more practically. The examples use strong colors since then the differences are more pronounced. This is using the same three ways of blending colors as the first example.
Instead of making it as easy as possible to work with color, most software make it unnecessarily hard, by doing image processing with representations not designed for it. Approximating the physical behavior of light with linear RGB models is one easy thing to do, but more work is needed to create image representations tailored for image processing and human perception.
Also see:
-
EVER (Exact Volumetric Ellipsoid Rendering) – Gaussian splatting alternative
https://radiancefields.com/how-ever-(exact-volumetric-ellipsoid-rendering)-does-this-work
https://half-potato.gitlab.io/posts/ever/
Unlike previous methods like Gaussian Splatting, EVER leverages ellipsoids instead of Gaussians and uses Ray Tracing instead of Rasterization. This shift eliminates artifacts like popping and blending inconsistencies, offering sharper and more accurate renderings.
-
The Rise and Fall of Adobe – The better, alternative software list to a criminal company
Best alternatives to Adobe:
https://github.com/KenneyNL/Adobe-Alternatives
- Affinity (Photo and illustration editing) https://affinity.serif.com/
- DaVinci Resolve (video editing): https://www.blackmagicdesign.com/au/products/davinciresolve/
- Clip Studio Paint (illustration): https://www.clipstudio.net/en/
- Toon Boom (animation): https://www.toonboom.com/
FEATURED POSTS
-
Black Body color aka the Planckian Locus curve for white point eye perception
http://en.wikipedia.org/wiki/Black-body_radiation
Black-body radiation is the type of electromagnetic radiation within or surrounding a body in thermodynamic equilibrium with its environment, or emitted by a black body (an opaque and non-reflective body) held at constant, uniform temperature. The radiation has a specific spectrum and intensity that depends only on the temperature of the body.
A black-body at room temperature appears black, as most of the energy it radiates is infra-red and cannot be perceived by the human eye. At higher temperatures, black bodies glow with increasing intensity and colors that range from dull red to blindingly brilliant blue-white as the temperature increases.
The Black Body Ultraviolet Catastrophe Experiment
In photography, color temperature describes the spectrum of light which is radiated from a “blackbody” with that surface temperature. A blackbody is an object which absorbs all incident light — neither reflecting it nor allowing it to pass through.
The Sun closely approximates a black-body radiator. Another rough analogue of blackbody radiation in our day to day experience might be in heating a metal or stone: these are said to become “red hot” when they attain one temperature, and then “white hot” for even higher temperatures. Similarly, black bodies at different temperatures also have varying color temperatures of “white light.”
Despite its name, light which may appear white does not necessarily contain an even distribution of colors across the visible spectrum.
Although planets and stars are neither in thermal equilibrium with their surroundings nor perfect black bodies, black-body radiation is used as a first approximation for the energy they emit. Black holes are near-perfect black bodies, and it is believed that they emit black-body radiation (called Hawking radiation), with a temperature that depends on the mass of the hole.
-
Types of Film Lights and their efficiency – CRI, Color Temperature and Luminous Efficacy
nofilmschool.com/types-of-film-lights
“Not every light performs the same way. Lights and lighting are tricky to handle. You have to plan for every circumstance. But the good news is, lighting can be adjusted. Let’s look at different factors that affect lighting in every scene you shoot. “
Use CRI, Luminous Efficacy and color temperature controls to match your needs.Color Temperature
Color temperature describes the “color” of white light by a light source radiated by a perfect black body at a given temperature measured in degrees Kelvinhttps://www.pixelsham.com/2019/10/18/color-temperature/
CRI
“The Color Rendering Index is a measurement of how faithfully a light source reveals the colors of whatever it illuminates, it describes the ability of a light source to reveal the color of an object, as compared to the color a natural light source would provide. The highest possible CRI is 100. A CRI of 100 generally refers to a perfect black body, like a tungsten light source or the sun. “https://www.studiobinder.com/blog/what-is-color-rendering-index
(more…)