“We combine these two optical systems in a single camera by splitting the aperture: one half applies application-specific modulation using a diffractive optical element, and the other captures a conventional image. This co-design with a dual-pixel sensor allows simultaneous capture of coded and uncoded images — without increasing physical or computational footprint.”
The EU Artificial Intelligence (AI) Act, which went into effect on August 1, 2024.
This act implements a risk-based approach to AI regulation, categorizing AI systems based on the level of risk they pose. High-risk systems, such as those used in healthcare, transport, and law enforcement, face stringent requirements, including risk management, transparency, and human oversight.
Key provisions of the AI Act include:
Transparency and Safety Requirements: AI systems must be designed to be safe, transparent, and easily understandable to users. This includes labeling requirements for AI-generated content, such as deepfakes (Engadget).
Risk Management and Compliance: Companies must establish comprehensive governance frameworks to assess and manage the risks associated with their AI systems. This includes compliance programs that cover data privacy, ethical use, and geographical considerations (Faegre Drinker Biddle & Reath LLP) (Passle).
Copyright and Data Mining: Companies must adhere to copyright laws when training AI models, obtaining proper authorization from rights holders for text and data mining unless it is for research purposes (Engadget).
Prohibitions and Restrictions: AI systems that manipulate behavior, exploit vulnerabilities, or perform social scoring are prohibited. The act also sets out specific rules for high-risk AI applications and imposes fines for non-compliance (Passle).
For US tech firms, compliance with the EU AI Act is critical due to the EU’s significant market size
FLUX (or FLUX. 1) is a suite of text-to-image models from Black Forest Labs, a new company set up by some of the AI researchers behind innovations and models like VQGAN, Stable Diffusion, Latent Diffusion, and Adversarial Diffusion Distillation
what are 3D Gaussians? They are a generalization of 1D Gaussians (the bell curve) to 3D. Essentially they are ellipsoids in 3D space, with a center, a scale, a rotation, and “softened edges”.
Each 3D Gaussian is optimized along with a (viewdependant) color and opacity. When blended together, here’s the visualization of the full model, rendered from ANY angle. As you can see, 3D Gaussian Splatting captures extremely well the fuzzy and soft nature of the plush toy, something that photogrammetry-based methods struggle to do.
In the last 10 years, over 1,000 people have asked me how to start a business. The truth? They’re all paralyzed by limiting beliefs. What they are and how to break them today:
Before we get into the How, let’s first unpack why people think they can’t start a business. Here are the biggest reasons I’ve found:
Björn Ottosson proposed OKlch in 2020 to create a color space that can closely mimic how color is perceived by the human eye, predicting perceived lightness, chroma, and hue.
The OK in OKLCH stands for Optimal Color.
L: Lightness (the perceived brightness of the color)
C: Chroma (the intensity or saturation of the color)
H: Hue (the actual color, such as red, blue, green, etc.)