BREAKING NEWS
LATEST POSTS
-
-
-
Schofield’s Laws of Computing
https://www.freecodecamp.org/news/schofields-laws-of-computing/
“Never put data into a program unless you can see exactly how to get it out.” ― Jack Schofield (2003)
“Data doesn’t really exist unless you have at least two copies of it.” ― Jack Schofield (2008)
“The easier it is for you to access your data, the easier it is for someone else to access your data.” ― Jack Schofield (2008)
-
How to Build a Hackintosh
https://www.freecodecamp.org/news/build-a-hackintosh/
A Hackintosh is a non-Mac computer system, made with PC parts, that runs the macOS operating system.
-
Basic GafferHQ python introduction
Working with the Python Scripting API
http://www.gafferhq.org/documentation/1.0.2.0/WorkingWithThePythonScriptingAPI/index.htmlNode Graph editing in Python
https://www.gafferhq.org/documentation/1.0.0.0/WorkingWithThePythonScriptingAPI/TutorialNodeGraphEditingInPython/index.htmlCommon operations
https://www.gafferhq.org/documentation/1.0.0.0/Reference/ScriptingReference/CommonOperations/index.htmlScripting box nodes
https://blog.gafferhq.org/?p=278Dev and pipe tips
https://blog.gafferhq.org/?cat=35import GafferScene import Gaffer # return a list of selections # (nodes HAVE TO BE selected for the following) sel = root.selection() # gaffer standard set list(sel) sel[0].typeName() dir( sel[0] ) sel[0].getName() sel.clear() root.removeChild( sel[0] ) # store the selected nodes in a variable >>> sel = root.selection() >>> myGroup = sel[0] >>> light = sel[1] # set location name myGroup['name'].setValue('groupLocation') light['name'].setValue('photometricLightLocation') # connect a node to a group >>> myGroup['in'][0].setInput( light['out'] ) # return the node/port attached to a group port >>> myGroup['in'][0].childNames('/') photometricLightLocation >>> myGroup['in'][0].getInput().fullName() >>> myGroup['in'][0].source().fullName() gui.scripts.ScriptNode.lighting_in1.PhotometricLightNode.out # return the full name of one of the objects # attached to the out port >>> light['out'].outputs()[0].fullName() gui.scripts.ScriptNode.lighting_in1.GroupNode.in.in0 >>> light GafferArnold.ArnoldLight( "PhotometricLightNode" ) >>> light['out'].childNames('') photometricLightLocation >>> light['out'].outputs()[0].node() GafferScene.Group( "Group" )
FEATURED POSTS
-
GretagMacbeth Color Checker Numeric Values and Middle Gray
The human eye perceives half scene brightness not as the linear 50% of the present energy (linear nature values) but as 18% of the overall brightness. We are biased to perceive more information in the dark and contrast areas. A Macbeth chart helps with calibrating back into a photographic capture into this “human perspective” of the world.
https://en.wikipedia.org/wiki/Middle_gray
In photography, painting, and other visual arts, middle gray or middle grey is a tone that is perceptually about halfway between black and white on a lightness scale in photography and printing, it is typically defined as 18% reflectance in visible light
Light meters, cameras, and pictures are often calibrated using an 18% gray card[4][5][6] or a color reference card such as a ColorChecker. On the assumption that 18% is similar to the average reflectance of a scene, a grey card can be used to estimate the required exposure of the film.
https://en.wikipedia.org/wiki/ColorChecker
(more…)