Colour – MacBeth Chart Checker Detection
/ colour, photography, production, python

github.com/colour-science/colour-checker-detection

A Python package implementing various colour checker detection algorithms and related utilities.

Photography basics: Lumens vs Candelas (candle) vs Lux vs FootCandle vs Watts vs Irradiance vs Illuminance
/ colour, Featured, lighting, photography

https://www.translatorscafe.com/unit-converter/en-US/illumination/1-11/

 

 

The power output of a light source is measured using the unit of watts W. This is a direct measure to calculate how much power the light is going to drain from your socket and it is not relatable to the light brightness itself.

The amount of energy emitted from it per second. That energy comes out in a form of photons which we can crudely represent with rays of light coming out of the source. The higher the power the more rays emitted from the source in a unit of time.

Not all energy emitted is visible to the human eye, so we often rely on photometric measurements, which takes in account the sensitivity of human eye to different wavelenghts

 

 

 

https://pllight.com/understanding-lighting-metrics/

Candela is the basic unit of measure of light intensity from any point in a single direction from a light source. It measures the total volume of light within a certain beam angle and direction.
While the luminance of starlight is around 0.001 cd/m2, that of a sunlit scene is around 100,000 cd/m2, which is a hundred millions times higher. The luminance of the sun itself is approximately 1,000,000,000 cd/m2.

 

https://www.hdrsoft.com/resources/dri.html#bit-depth

To make it easier to represent values that vary so widely, it is common to use a logarithmic scale to plot the luminance. The scanline below represents the log base 10 of the luminance, so going from 0.1 to 1 is the same distance as going from 100 to 1000, for instance. A scene showing the interior of a room with a sunlit view outside the window, for instance, will have a dynamic range of approximately 100,000:1.

 

Lumen (lm) is the basic unit of measure for a light that is visible to the human eye. It indicates the total potential amount of light from a light source. If a uniform point source of 1 candela is at the center of a sphere with a 1ft2 radius with an opening of 1 ft2 at its surface, the quantity of light that passes through that opening is equal to 1 lumen. Since lumens are a photometric measurement for humans, we do not use this unit of measure for describing horticultural lighting.

 

Technically speaking, a Lumen is the SI unit of luminous flux, which is equal to the amount of light which is emitted per second in a unit solid angle of one steradian from a uniform source of one-candela intensity radiating in all directions.

 

Illuminance refers to the density of light over a given surface area, and is expressed in mostly LUX or lumens/m2.
Luminance refers to the amount of light emitted under various circumstances, and it is expressed mostly in LUMENS or candela/m2.

 

 

 

Lux (lx) or often Illuminance, is a photometric unit along a given area, which takes in account the sensitivity of human eye to different wavelenghts. It is the measure of light at a specific distance within a specific area at that distance. Often used to measure the incidental sun’s intensity. Its default unit describes the number of lumens visible in a square meter (lumen/m2). 100 lumens spread out over an area of 1 m2 will have an illuminance of 100 lx. The same 100 lumens spread out over 10 m2 produces a dimmer illuminance of only 10 lx.

 

The core difference between lux and lumens can be summarized as follows:

  • Lux is a measure of illuminance, the total amount of light that falls on a surface at a given distance
  • Lumens is a measure of luminous flux, the total amount of light emitted in all directions.

 

A footcandle describes the number of lumen per square foot. Therefore, one footcandle is equal to approximately 10.764 lx. This measure is only relevant for how we perceive light and is irrelevant for plant growth. Like lumens, lux and footcandles are not useful for describing horticultural lighting.

 

Color Rendering Index, or CRI, describes the ability of a light source to show an object’s color accurately in comparison to standardized colour samples under a reference light source. The highest value a light can achieve is a CRI of 100. Lower CRI values result in objects appearing unnatural or discolored. Under a light with a CRI of 100, an orange appears bright orange; under a light with a CRI of 70, the orange appears darker and bluer. This measure is dependent on how the human eye sees light, and so it is not a useful parameter for choosing horticultural lighting.

 

Correlated Color Temperature, or CCT, describes the color of a light source vs. a reference source when heated to a particular temperature, and is measured in degrees Kelvin (°K). The higher the CCT of a light source, the cooler the light’s color. For example, a very red light achieves a CCT of about 1000 K while a very blue light can achieve a CCT of about 10,000 K. Warm white lights will have a CCT around 2700 K (since they emit more energy at the red end of the spectrum), neutral white will be around 4000 K, and cool white around 5000 K (emitting more energy at the blue end of the spectrum). Similar to CRI, this measure is dependent on light perception by the human eye, and, once again, is not useful for describing or choosing horticultural lighting.

 

http://www.lumis.co.nz/reference-information/lighting-terminology

Light is a visible portion of electromagnetic radiation. Watts isn’t a measure of light output. Watts is actually a measure of total power output. Not all of the energy emitted by a light source is visible light – heat and invisible light waves (ex. infrared light) are also emitted. Lumens, on the other hand, will tell you the total visible light output of a source. For this reason, lumens (not watts) is the relevant unit of measure when you’re concerned about visibility. The higher the power the more rays emitted from the source in a unit of time.

 

Irradiance (radiant flux emitted by a surface per unit area aka watt per square meter) is a radiometric unit. As such also actually a measure of total power output.
Radiometric units are based on physical power, that means all wavelengths are weighted equally, while photometric units take into account the sensitivity of human eye to different wavelengths.
The weighting is determined by the luminosity function (which was measured for human eye and is an agreed-upon standard).

 

Converting Irradiance and Illuminance
http://www.dfisica.ubi.pt/~hgil/Fotometria/HandBook/ch07.html
There is a different conversion factor for every wavelength, so the spectral composition of light must be known to make the conversion.

At the most sensitive wavelegth to the human eye the conversion factor is

1.0 W/m2 = 683.002 lumen/m2 # at wavelength = 555nm (green)

That means the irradiance (power) to make 1 lumen is at it’s minimum at this wavelength (just 1.464 mW/m2).
Luminous efficiency is then the ratio between the actual number of lumens per watt and the theoretical maximum.
Incandescent light bulb has a luminous efficiency of 2% which is very poor. It’s because lot of it’s irradiance is only heat which is not visible. The luminosity function is zero for wavelengths outside the visible spectrum.

 

 

 

https://www.rapidtables.com/calc/light/lux-to-lumen-calculator.html

 

https://www.projectorpoint.co.uk/news/how-bright-should-my-projector-be/

 

https://dracobroadcast.eu/blogs/news/continuous-light-converting-guide

 

  • Watts (halogen) – A measure of energy consumed
  • Watts (HMI) – A measure of energy consumed
  • Watts (LED) – A measure of energy consumed
  • Lux – Lumens per square meter, illuminance at target
  • Footcandles – Lumens per square foot
  • Stops – Size of lens aperture
  • EV – Exposure Value
  • Lumens – Measure of amount of visible light, luminance from source
  • Candela – Measure of entire volume of lighting
  • NIT = Candela per square meter but is not part of the International System of Units
What causes color
/ colour

www.webexhibits.org/causesofcolor/5.html

Water itself has an intrinsic blue color that is a result of its molecular structure and its behavior.

Colour in marketing and branding
/ colour

 

 

 

The 7 key elements of brand identity design + 10 corporate identity examples
/ colour, design

www.lucidpress.com/blog/the-7-key-elements-of-brand-identity-design

1. Clear brand purpose and positioning

2. Thorough market research

3. Likable brand personality

4. Memorable logo

5. Attractive color palette

6. Professional typography

7. On-brand supporting graphics

 

colorhunt.co
/ colour, reference

Color Hunt is a free and open platform for color inspiration with thousands of trendy hand-picked color palettes.

colorhunt.co/

The Forbidden colors – Red-Green & Blue-Yellow: The Stunning Colors You Can’t See
/ colour

www.livescience.com/17948-red-green-blue-yellow-stunning-colors.html

 

 

While the human eye has red, green, and blue-sensing cones, those cones are cross-wired in the retina to produce a luminance channel plus a red-green and a blue-yellow channel, and it’s data in that color space (known technically as “LAB”) that goes to the brain. That’s why we can’t perceive a reddish-green or a yellowish-blue, whereas such colors can be represented in the RGB color space used by digital cameras.

 

https://en.rockcontent.com/blog/the-use-of-yellow-in-data-design

The back of the retina is covered in light-sensitive neurons known as cone cells and rod cells. There are three types of cone cells, each sensitive to different ranges of light. These ranges overlap, but for convenience the cones are referred to as blue (short-wavelength), green (medium-wavelength), and red (long-wavelength). The rod cells are primarily used in low-light situations, so we’ll ignore those for now.

 

When light enters the eye and hits the cone cells, the cones get excited and send signals to the brain through the visual cortex. Different wavelengths of light excite different combinations of cones to varying levels, which generates our perception of color. You can see that the red cones are most sensitive to light, and the blue cones are least sensitive. The sensitivity of green and red cones overlaps for most of the visible spectrum.

 

Here’s how your brain takes the signals of light intensity from the cones and turns it into color information. To see red or green, your brain finds the difference between the levels of excitement in your red and green cones. This is the red-green channel.

 

To get “brightness,” your brain combines the excitement of your red and green cones. This creates the luminance, or black-white, channel. To see yellow or blue, your brain then finds the difference between this luminance signal and the excitement of your blue cones. This is the yellow-blue channel.

 

From the calculations made in the brain along those three channels, we get four basic colors: blue, green, yellow, and red. Seeing blue is what you experience when low-wavelength light excites the blue cones more than the green and red.

 

Seeing green happens when light excites the green cones more than the red cones. Seeing red happens when only the red cones are excited by high-wavelength light.

 

Here’s where it gets interesting. Seeing yellow is what happens when BOTH the green AND red cones are highly excited near their peak sensitivity. This is the biggest collective excitement that your cones ever have, aside from seeing pure white.

 

Notice that yellow occurs at peak intensity in the graph to the right. Further, the lens and cornea of the eye happen to block shorter wavelengths, reducing sensitivity to blue and violet light.

Polarised vs unpolarized filtering
/ colour, lighting, production

A light wave that is vibrating in more than one plane is referred to as unpolarized light. … Polarized light waves are light waves in which the vibrations occur in a single plane. The process of transforming unpolarized light into polarized light is known as polarization.

en.wikipedia.org/wiki/Polarizing_filter_(photography)

 

Light reflected from a non-metallic surface becomes polarized; this effect is maximum at Brewster’s angle, about 56° from the vertical for common glass.

 

A polarizer rotated to pass only light polarized in the direction perpendicular to the reflected light will absorb much of it. This absorption allows glare reflected from, for example, a body of water or a road to be reduced. Reflections from shiny surfaces (e.g. vegetation, sweaty skin, water surfaces, glass) are also reduced. This allows the natural color and detail of what is beneath to come through. Reflections from a window into a dark interior can be much reduced, allowing it to be seen through. (The same effects are available for vision by using polarizing sunglasses.)

 

www.physicsclassroom.com/class/light/u12l1e.cfm

 

Some of the light coming from the sky is polarized (bees use this phenomenon for navigation). The electrons in the air molecules cause a scattering of sunlight in all directions. This explains why the sky is not dark during the day. But when looked at from the sides, the light emitted from a specific electron is totally polarized.[3] Hence, a picture taken in a direction at 90 degrees from the sun can take advantage of this polarization. Use of a polarizing filter, in the correct direction, will filter out the polarized component of skylight, darkening the sky; the landscape below it, and clouds, will be less affected, giving a photograph with a darker and more dramatic sky, and emphasizing the clouds.

 

There are two types of polarizing filters readily available, linear and “circular”, which have exactly the same effect photographically. But the metering and auto-focus sensors in certain cameras, including virtually all auto-focus SLRs, will not work properly with linear polarizers because the beam splitters used to split off the light for focusing and metering are polarization-dependent.

 

Polarizing filters reduce the light passed through to the film or sensor by about one to three stops (2–8×) depending on how much of the light is polarized at the filter angle selected. Auto-exposure cameras will adjust for this by widening the aperture, lengthening the time the shutter is open, and/or increasing the ASA/ISO speed of the camera.

 

www.adorama.com/alc/nd-filter-vs-polarizer-what%25e2%2580%2599s-the-difference

 

Neutral Density (ND) filters help control image exposure by reducing the light that enters the camera so that you can have more control of your depth of field and shutter speed. Polarizers or polarizing filters work in a similar way, but the difference is that they selectively let light waves of a certain polarization pass through. This effect helps create more vivid colors in an image, as well as manage glare and reflections from water surfaces. Both are regarded as some of the best filters for landscape and travel photography as they reduce the dynamic range in high-contrast images, thus enabling photographers to capture more realistic and dramatic sceneries.

 

shopfelixgray.com/blog/polarized-vs-non-polarized-sunglasses/

 

www.eyebuydirect.com/blog/difference-polarized-nonpolarized-sunglasses/

 

Capturing textures albedo

Building a Portable PBR Texture Scanner by Stephane Lb
http://rtgfx.com/pbr-texture-scanner/

 

 

How To Split Specular And Diffuse In Real Images, by John Hable
http://filmicworlds.com/blog/how-to-split-specular-and-diffuse-in-real-images/

 

Capturing albedo using a Spectralon
https://www.activision.com/cdn/research/Real_World_Measurements_for_Call_of_Duty_Advanced_Warfare.pdf

Real_World_Measurements_for_Call_of_Duty_Advanced_Warfare.pdf

Spectralon is a teflon-based pressed powderthat comes closest to being a pure Lambertian diffuse material that reflects 100% of all light. If we take an HDR photograph of the Spectralon alongside the material to be measured, we can derive thediffuse albedo of that material.

 

The process to capture diffuse reflectance is very similar to the one outlined by Hable.

 

1. We put a linear polarizing filter in front of the camera lens and a second linear polarizing filterin front of a modeling light or a flash such that the two filters are oriented perpendicular to eachother, i.e. cross polarized.

 

2. We place Spectralon close to and parallel with the material we are capturing and take brack-eted shots of the setup7. Typically, we’ll take nine photographs, from -4EV to +4EV in 1EVincrements.

 

3. We convert the bracketed shots to a linear HDR image. We found that many HDR packagesdo not produce an HDR image in which the pixel values are linear. PTGui is an example of apackage which does generate a linear HDR image. At this point, because of the cross polarization,the image is one of surface diffuse response.

 

4. We open the file in Photoshop and normalize the image by color picking the Spectralon, filling anew layer with that color and setting that layer to “Divide”. This sets the Spectralon to 1 in theimage. All other color values are relative to this so we can consider them as diffuse albedo.

If a blind person gained sight, could they recognize objects previously touched?
/ colour, quotes

news.psu.edu/story/141360/2006/04/17/research/probing-question-if-blind-person-gained-sight-could-they-recognize

 

Blind people who regain their sight may find themselves in a world they don’t immediately comprehend. “It would be more like a sighted person trying to rely on tactile information,” Moore says.

 

Learning to see is a developmental process, just like learning language, Prof Cathleen Moore continues. “As far as vision goes, a three-and-a-half year old child is already a well-calibrated system.”

Space bodies’ components and light spectroscopy
/ colour

www.plutorules.com/page-111-space-rocks.html

This help’s us understand the composition of components in/on solar system bodies.

Dips in the observed light spectrum, also known as, lines of absorption occur as gasses absorb energy from light at specific points along the light spectrum.

These dips or darkened zones (lines of absorption) leave a finger print which identify elements and compounds.

In this image the dark absorption bands appear as lines of emission which occur as the result of emitted not reflected (absorbed) light.

 

 

 

Lines of absorption

Lines of emission
What light is best to illuminate gems for resale
/ colour, lighting

www.palagems.com/gem-lighting2

 

Artificial light sources, not unlike the diverse phases of natural light, vary considerably in their properties. As a result, some lamps render an object’s color better than others do.

 

The most important criterion for assessing the color-rendering ability of any lamp is its spectral power distribution curve.

 

Natural daylight varies too much in strength and spectral composition to be taken seriously as a lighting standard for grading and dealing colored stones. For anything to be a standard, it must be constant in its properties, which natural light is not.

 

For dealers in particular to make the transition from natural light to an artificial light source, that source must offer:
1- A degree of illuminance at least as strong as the common phases of natural daylight.
2- Spectral properties identical or comparable to a phase of natural daylight.

 

A source combining these two things makes gems appear much the same as when viewed under a given phase of natural light. From the viewpoint of many dealers, this corresponds to a naturalappearance.

 

The 6000° Kelvin xenon short-arc lamp appears closest to meeting the criteria for a standard light source. Besides the strong illuminance this lamp affords, its spectrum is very similar to CIE standard illuminants of similar color temperature.

What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?
/ colour, Featured, photography

https://www.discovery.com/science/mexapixels-in-human-eye

About 576 megapixels for the entire field of view.

 

Consider a view in front of you that is 90 degrees by 90 degrees, like looking through an open window at a scene. The number of pixels would be:
90 degrees * 60 arc-minutes/degree * 1/0.3 * 90 * 60 * 1/0.3 = 324,000,000 pixels (324 megapixels).

 

At any one moment, you actually do not perceive that many pixels, but your eye moves around the scene to see all the detail you want. But the human eye really sees a larger field of view, close to 180 degrees. Let’s be conservative and use 120 degrees for the field of view. Then we would see:

120 * 120 * 60 * 60 / (0.3 * 0.3) = 576 megapixels.

Or.

7 megapixels for the 2 degree focus arc… + 1 megapixel for the rest.

https://clarkvision.com/articles/eye-resolution.html

 

 

How many megapixels do you really need?

https://www.tomsguide.com/us/how-many-megapixels-you-need,review-1974.html

 

 

Photography basics: Color Temperature and White Balance
/ colour, Featured, lighting, photography

 

Color Temperature of a light source describes the spectrum of light which is radiated from a theoretical “blackbody” (an ideal physical body that absorbs all radiation and incident light – neither reflecting it nor allowing it to pass through) with a given surface temperature.

https://en.wikipedia.org/wiki/Color_temperature

 

Or. Most simply it is a method of describing the color characteristics of light through a numerical value that corresponds to the color emitted by a light source, measured in degrees of Kelvin (K) on a scale from 1,000 to 10,000.

 

More accurately. The color temperature of a light source is the temperature of an ideal backbody that radiates light of comparable hue to that of the light source.

As such, the color temperature of a light source is a numerical measurement of its color appearance. It is based on the principle that any object will emit light if it is heated to a high enough temperature, and that the color of that light will shift in a predictable manner as the temperature is increased. The system is based on the color changes of a theoretical “blackbody radiator” as it is heated from a cold black to a white hot state.

 

So, why do we measure the hue of the light as a “temperature”? This was started in the late 1800s, when the British physicist William Kelvin heated a block of carbon. It glowed in the heat, producing a range of different colors at different temperatures. The black cube first produced a dim red light, increasing to a brighter yellow as the temperature went up, and eventually produced a bright blue-white glow at the highest temperatures. In his honor, Color Temperatures are measured in degrees Kelvin, which are a variation on Centigrade degrees. Instead of starting at the temperature water freezes, the Kelvin scale starts at “absolute zero,” which is -273 Centigrade.

 

More about black bodies here: http://www.pixelsham.com/2013/03/14/black-body-color

 

 

The Sun closely approximates a black-body radiator. The effective temperature, defined by the total radiative power per square unit, is about 5780 K. The color temperature of sunlight above the atmosphere is about 5900 K. Time of the day and atmospheric conditions bias the purity of the light that reaches us from the sun.

Some think that the Sun’s output in visible light peaks in the yellow. However, the Sun’s visible output peaks in the green:

  

 

 

http://solar-center.stanford.edu/SID/activities/GreenSun.html

Independently, we refer to the sun as a pure white light source. And we use its spectrum as a reference for other light sources.

Because the sun’s spectrum can change depending on so many factors (including pollution), a standard called D65 was defined (by the International Commission on Illumination) to represent what is considered as the average spectrum of the sun in average conditions.

This in reality tends to bias towards an overcast day of 6500K. And while it is implemented at different temperatures by different manufacturers, it is still considered a more common standard.

 

https://en.wikipedia.org/wiki/Illuminant_D65

 

https://www.scratchapixel.com/lessons/digital-imaging/colors

 

 

In this context, the White Point of a light defines the neutral color of its given color space.

https://chrisbrejon.com/cg-cinematography/chapter-1-color-management/#Colorspace

 

D65 corresponds to what the spectrum of the sun would typically look like on a midday sun somewhere in Western/Northern Europe (figure 9). This D65 which is also called the daylight illuminant is not a spectrum which we can exactly reproduce with a light source but rather a reference against which we can compare the spectrum of existing lights.

 

Another rough analogue of blackbody radiation in our day to day experience might be in heating a metal or stone: these are said to become “red hot” when they attain one temperature, and then “white hot” for even higher temperatures.

 

Similarly, black bodies at different temperatures also have varying color temperatures of “white light.” Despite its name, light which may appear white does not necessarily contain an even distribution of colors across the visible spectrum.

 

The Kelvin Color Temperature scale imagines a black body object— (such as a lamp filament) being heated. At some point the object will get hot enough to begin to glow. As it gets hotter its glowing color will shift, moving from deep reds, such as a low burning fire would give, to oranges & yellows, all the way up to white hot.

 

Color temperatures over 5,000K are called cool colors (bluish white), while lower color temperatures (2,700–3,000 K) are called warm colors (yellowish white through red)

  

 

https://www.ni.com/en-ca/innovations/white-papers/12/a-practical-guide-to-machine-vision-lighting.html

 

Our eyes are very good at judging what is white under different light sources, but digital cameras often have great difficulty with auto white balance (AWB) — and can create unsightly blue, orange, or even green color casts. Understanding digital white balance can help you avoid these color casts, thereby improving your photos under a wider range of lighting conditions.

 

 

White balance (WB) is the process of removing these color casts from captured media, so that objects which appear white in perception (or expected) are rendered white in your medium.

This color cast is due to the way light itself is formed and spread.

 

What a white balancing procedure does is it identifies what is white in your footage. It doesn’t know what white is until you tell it what it is.

 

You can often do this with AWB (Automatic White Balance), but the results are not always desirable. That is why you may choose to manually change your white balance.

When you white balance you are telling your camera to treat any object with similar chrominance and luminance as white.

 

Different type of light sources generate different color casts.

 

As such, camera white balance has to take into account this “color temperature” of a light source, which mostly refers to the relative warmth or coolness of white light.

 

Matching the temperature value of an indoor/outdoor cast makes for a white balance.
The two color temperatures you’ll hear most often discussed are outdoor lighting which is often ball parked at 5600K and indoor (tungsten) lighting which is generally ball parked at 3200K. These are the two numbers you’ll hear over and over again. Higher color temperatures (over 5000K) are considered “cool” (i.e. Blue’ish). Lower color temperatures (under 5000K) are considered “warm” (i.e. orange’ish).

 

Therefore if you are shooting indoors under tungsten lighting at 3200K you will set your white balance for indoor shooting at this color temperature. In this case, your camera will correct your camera’s settings to ensure that white appears white. Your camera will either have an indoor 3200K auto option (even the most basic camera’s have this option) or you can choose to set it manually.

 

Things get complicated if you’re filming indoors during the day under tungsten lighting while the outdoor light is coming through a window. Now what we have is a mixing of color temperatures. What you need to understand in this situation is that there is no perfect white balance setting in a mixed color temperature setting. You will need to make a compromise on one end of the spectrum or the other. If you set your white balance to tungsten 3200K the daylight colors will appear very blue. If you set your white balance to optimize for daylight 5600K then your tungsten lighting will appear very orange.

 

Where to use which light:
For lighting building interiors, it is often important to take into account the color temperature of illumination. A warmer (i.e., a lower color temperature) light is often used in public areas to promote relaxation, while a cooler (higher color temperature) light is used to enhance concentration, for example in schools and offices.

 

 

REFERENCES

 


How to Convert Temperature (K) to RGB: Algorithm and Sample Code

https://tannerhelland.com/2012/09/18/convert-temperature-rgb-algorithm-code.html

 

http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.html

 

http://riverfarenh.com/light-bulb-color-chart/

 

https://www.lightsfilmschool.com/blog/filmmaking-white-balance-and-color-temperature

 

https://astro-canada.ca/le_spectre_electromagnetique-the_electromagnetic_spectrum-eng

 

http://www.3drender.com/glossary/colortemp.htm

 

http://pernime.info/light-kelvin-scale/

 

http://lowel.tiffen.com/edu/color_temperature_and_rendering_demystified.html

 

https://en.wikipedia.org/wiki/Color_temperature

 

https://www.sylvania.com/en-us/innovation/education/light-and-color/Pages/color-characteristics-of-light.aspx

 

How to Convert Temperature (K) to RGB:
http://www.tannerhelland.com/4435/convert-temperature-rgb-algorithm-code/

 

  

 

 

https://help.autodesk.com/view/ARNOL/ENU/?guid=arnold_for_cinema_4d_ci_Lights_html