COMPOSITION
- 
StudioBinder – Roger Deakins on How to Choose a Camera Lens — Cinematography Composition TechniquesRead more: StudioBinder – Roger Deakins on How to Choose a Camera Lens — Cinematography Composition Techniqueshttps://www.studiobinder.com/blog/camera-lens-buying-guide/ https://www.studiobinder.com/blog/e-books/camera-lenses-explained-volume-1-ebook 
DESIGN
- 
Kristina Kashtanova – “This is how GPT-4 sees and hears itself”Read more: Kristina Kashtanova – “This is how GPT-4 sees and hears itself”“I used GPT-4 to describe itself. Then I used its description to generate an image, a video based on this image and a soundtrack. Tools I used: GPT-4, Midjourney, Kaiber AI, Mubert, RunwayML This is the description I used that GPT-4 had of itself as a prompt to text-to-image, image-to-video, and text-to-music. I put the video and sound together in RunwayML. GPT-4 described itself as: “Imagine a sleek, metallic sphere with a smooth surface, representing the vast knowledge contained within the model. The sphere emits a soft, pulsating glow that shifts between various colors, symbolizing the dynamic nature of the AI as it processes information and generates responses. The sphere appears to float in a digital environment, surrounded by streams of data and code, reflecting the complex algorithms and computing power behind the AI” 
COLOR
- 
Björn Ottosson – How software gets color wrongRead more: Björn Ottosson – How software gets color wronghttps://bottosson.github.io/posts/colorwrong/ Most software around us today are decent at accurately displaying colors. Processing of colors is another story unfortunately, and is often done badly. To understand what the problem is, let’s start with an example of three ways of blending green and magenta: - Perceptual blend – A smooth transition using a model designed to mimic human perception of color. The blending is done so that the perceived brightness and color varies smoothly and evenly.
- Linear blend – A model for blending color based on how light behaves physically. This type of blending can occur in many ways naturally, for example when colors are blended together by focus blur in a camera or when viewing a pattern of two colors at a distance.
- sRGB blend – This is how colors would normally be blended in computer software, using sRGB to represent the colors.
 Let’s look at some more examples of blending of colors, to see how these problems surface more practically. The examples use strong colors since then the differences are more pronounced. This is using the same three ways of blending colors as the first example. Instead of making it as easy as possible to work with color, most software make it unnecessarily hard, by doing image processing with representations not designed for it. Approximating the physical behavior of light with linear RGB models is one easy thing to do, but more work is needed to create image representations tailored for image processing and human perception. Also see: 
- 
What is OLED and what can it do for your TVRead more: What is OLED and what can it do for your TVhttps://www.cnet.com/news/what-is-oled-and-what-can-it-do-for-your-tv/ OLED stands for Organic Light Emitting Diode. Each pixel in an OLED display is made of a material that glows when you jab it with electricity. Kind of like the heating elements in a toaster, but with less heat and better resolution. This effect is called electroluminescence, which is one of those delightful words that is big, but actually makes sense: “electro” for electricity, “lumin” for light and “escence” for, well, basically “essence.” OLED TV marketing often claims “infinite” contrast ratios, and while that might sound like typical hyperbole, it’s one of the extremely rare instances where such claims are actually true. Since OLED can produce a perfect black, emitting no light whatsoever, its contrast ratio (expressed as the brightest white divided by the darkest black) is technically infinite. OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks. 
- 
Rec-2020 – TVs new color gamut standard used by Dolby Vision?Read more: Rec-2020 – TVs new color gamut standard used by Dolby Vision?https://www.hdrsoft.com/resources/dri.html#bit-depth  The dynamic range is a ratio between the maximum and minimum values of a physical measurement. Its definition depends on what the dynamic range refers to. For a scene: Dynamic range is the ratio between the brightest and darkest parts of the scene. For a camera: Dynamic range is the ratio of saturation to noise. More specifically, the ratio of the intensity that just saturates the camera to the intensity that just lifts the camera response one standard deviation above camera noise. For a display: Dynamic range is the ratio between the maximum and minimum intensities emitted from the screen. The Dynamic Range of real-world scenes can be quite high — ratios of 100,000:1 are common in the natural world. An HDR (High Dynamic Range) image stores pixel values that span the whole tonal range of real-world scenes. Therefore, an HDR image is encoded in a format that allows the largest range of values, e.g. floating-point values stored with 32 bits per color channel. Another characteristics of an HDR image is that it stores linear values. This means that the value of a pixel from an HDR image is proportional to the amount of light measured by the camera. For TVs HDR is great, but it’s not the only new TV feature worth discussing. (more…)
- 
Victor Perez – ACES Color Management in DaVinci ResolveRead more: Victor Perez – ACES Color Management in DaVinci Resolvehttpv://www.youtube.com/watch?v=i–TS88-6xA 
LIGHTING
- 
The Color of Infinite TemperatureRead more: The Color of Infinite TemperatureThis is the color of something infinitely hot.  Of course you’d instantly be fried by gamma rays of arbitrarily high frequency, but this would be its spectrum in the visible range. johncarlosbaez.wordpress.com/2022/01/16/the-color-of-infinite-temperature/ This is also the color of a typical neutron star. They’re so hot they look the same. 
 It’s also the color of the early Universe!This was worked out by David Madore.  The color he got is sRGB(148,177,255). 
 www.htmlcsscolor.com/hex/94B1FFAnd according to the experts who sip latte all day and make up names for colors, this color is called ‘Perano’. 
- 
Simulon – a Hollywood production studio app in the hands of an independent creator with access to consumer hardware, LDRi to HDRi through MLRead more: Simulon – a Hollywood production studio app in the hands of an independent creator with access to consumer hardware, LDRi to HDRi through MLDivesh Naidoo: The video below was made with a live in-camera preview and auto-exposure matching, no camera solve, no HDRI capture and no manual compositing setup. Using the new Simulon phone app. LDR to HDR through ML https://simulon.typeform.com/betatest (more…)Process example 
- 
3D Lighting Tutorial by Amaan KramRead more: 3D Lighting Tutorial by Amaan Kramhttp://www.amaanakram.com/lightingT/part1.htm The goals of lighting in 3D computer graphics are more or less the same as those of real world lighting. Lighting serves a basic function of bringing out, or pushing back the shapes of objects visible from the camera’s view. 
 It gives a two-dimensional image on the monitor an illusion of the third dimension-depth.But it does not just stop there. It gives an image its personality, its character. A scene lit in different ways can give a feeling of happiness, of sorrow, of fear etc., and it can do so in dramatic or subtle ways. Along with personality and character, lighting fills a scene with emotion that is directly transmitted to the viewer. Trying to simulate a real environment in an artificial one can be a daunting task. But even if you make your 3D rendering look absolutely photo-realistic, it doesn’t guarantee that the image carries enough emotion to elicit a “wow” from the people viewing it. Making 3D renderings photo-realistic can be hard. Putting deep emotions in them can be even harder. However, if you plan out your lighting strategy for the mood and emotion that you want your rendering to express, you make the process easier for yourself. Each light source can be broken down in to 4 distinct components and analyzed accordingly. · Intensity 
 · Direction
 · Color
 · SizeThe overall thrust of this writing is to produce photo-realistic images by applying good lighting techniques. 
- 
Custom bokeh in a raytraced DOF renderRead more: Custom bokeh in a raytraced DOF renderTo achieve a custom pinhole camera effect with a custom bokeh in Arnold Raytracer, you can follow these steps: - Set the render camera with a focal length around 50 (or as needed)
- Set the F-Stop to a high value (e.g., 22).
- Set the focus distance as you require
- Turn on DOF
- Place a plane a few cm in front of the camera.
- Texture the plane with a transparent shape at the center of it. (Transmission with no specular roughness)
 
- 
Gamma correctionRead more: Gamma correction http://www.normankoren.com/makingfineprints1A.html#Gammabox https://en.wikipedia.org/wiki/Gamma_correction http://www.photoscientia.co.uk/Gamma.htm https://www.w3.org/Graphics/Color/sRGB.html http://www.eizoglobal.com/library/basics/lcd_display_gamma/index.html https://forum.reallusion.com/PrintTopic308094.aspx Basically, gamma is the relationship between the brightness of a pixel as it appears on the screen, and the numerical value of that pixel. Generally Gamma is just about defining relationships. Three main types: 
 – Image Gamma encoded in images
 – Display Gammas encoded in hardware and/or viewing time
 – System or Viewing Gamma which is the net effect of all gammas when you look back at a final image. In theory this should flatten back to 1.0 gamma.
 (more…)
- 
What light is best to illuminate gems for resaleRead more: What light is best to illuminate gems for resalewww.palagems.com/gem-lighting2 Artificial light sources, not unlike the diverse phases of natural light, vary considerably in their properties. As a result, some lamps render an object’s color better than others do. The most important criterion for assessing the color-rendering ability of any lamp is its spectral power distribution curve. Natural daylight varies too much in strength and spectral composition to be taken seriously as a lighting standard for grading and dealing colored stones. For anything to be a standard, it must be constant in its properties, which natural light is not. For dealers in particular to make the transition from natural light to an artificial light source, that source must offer: 
 1- A degree of illuminance at least as strong as the common phases of natural daylight.
 2- Spectral properties identical or comparable to a phase of natural daylight.A source combining these two things makes gems appear much the same as when viewed under a given phase of natural light. From the viewpoint of many dealers, this corresponds to a naturalappearance. The 6000° Kelvin xenon short-arc lamp appears closest to meeting the criteria for a standard light source. Besides the strong illuminance this lamp affords, its spectrum is very similar to CIE standard illuminants of similar color temperature.   
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
MiniTunes V1 – Free MP3 library app
- 
JavaScript how-to free resources
- 
4dv.ai – Remote Interactive 3D Holographic Presentation Technology and System running on the PlayCanvas engine
- 
MiniMax-Remover – Taming Bad Noise Helps Video Object Removal Rotoscoping
- 
Zibra.AI – Real-Time Volumetric Effects in Virtual Production. Now free for Indies!
- 
Embedding frame ranges into Quicktime movies with FFmpeg
- 
AI Data Laundering: How Academic and Nonprofit Researchers Shield Tech Companies from Accountability
- 
White Balance is Broken!
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.












































