COMPOSITION
DESIGN
- 
Kristina Kashtanova – “This is how GPT-4 sees and hears itself”Read more: Kristina Kashtanova – “This is how GPT-4 sees and hears itself”“I used GPT-4 to describe itself. Then I used its description to generate an image, a video based on this image and a soundtrack. Tools I used: GPT-4, Midjourney, Kaiber AI, Mubert, RunwayML This is the description I used that GPT-4 had of itself as a prompt to text-to-image, image-to-video, and text-to-music. I put the video and sound together in RunwayML. GPT-4 described itself as: “Imagine a sleek, metallic sphere with a smooth surface, representing the vast knowledge contained within the model. The sphere emits a soft, pulsating glow that shifts between various colors, symbolizing the dynamic nature of the AI as it processes information and generates responses. The sphere appears to float in a digital environment, surrounded by streams of data and code, reflecting the complex algorithms and computing power behind the AI” 
COLOR
- 
What causes colorRead more: What causes colorwww.webexhibits.org/causesofcolor/5.html Water itself has an intrinsic blue color that is a result of its molecular structure and its behavior.  
- 
OLED vs QLED – What TV is better?Read more: OLED vs QLED – What TV is better?Supported by LG, Philips, Panasonic and Sony sell the OLED system TVs. 
 OLED stands for “organic light emitting diode.”
 It is a fundamentally different technology from LCD, the major type of TV today.
 OLED is “emissive,” meaning the pixels emit their own light.Samsung is branding its best TVs with a new acronym: “QLED” 
 QLED (according to Samsung) stands for “quantum dot LED TV.”
 It is a variation of the common LED LCD, adding a quantum dot film to the LCD “sandwich.”
 QLED, like LCD, is, in its current form, “transmissive” and relies on an LED backlight.OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks. QLED, as an improvement over OLED, significantly improves the picture quality. QLED can produce an even wider range of colors than OLED, which says something about this new tech. QLED is also known to produce up to 40% higher luminance efficiency than OLED technology. Further, many tests conclude that QLED is far more efficient in terms of power consumption than its predecessor, OLED. 
 (more…)
- 
mmColorTarget – Nuke Gizmo for color matching a MacBeth chartRead more: mmColorTarget – Nuke Gizmo for color matching a MacBeth charthttps://www.marcomeyer-vfx.de/posts/2014-04-11-mmcolortarget-nuke-gizmo/ https://www.marcomeyer-vfx.de/posts/mmcolortarget-nuke-gizmo/ https://vimeo.com/9.1652466e+07 https://www.nukepedia.com/gizmos/colour/mmcolortarget 
- 
Composition – cinematography Cheat SheetRead more: Composition – cinematography Cheat Sheet Where is our eye attracted first? Why? Size. Focus. Lighting. Color. Size. Mr. White (Harvey Keitel) on the right. 
 Focus. He’s one of the two objects in focus.
 Lighting. Mr. White is large and in focus and Mr. Pink (Steve Buscemi) is highlighted by
 a shaft of light.
 Color. Both are black and white but the read on Mr. White’s shirt now really stands out.
 (more…)
 What type of lighting?
- 
Photography basics: Color Temperature and White BalanceRead more: Photography basics: Color Temperature and White BalanceColor Temperature of a light source describes the spectrum of light which is radiated from a theoretical “blackbody” (an ideal physical body that absorbs all radiation and incident light – neither reflecting it nor allowing it to pass through) with a given surface temperature. https://en.wikipedia.org/wiki/Color_temperature Or. Most simply it is a method of describing the color characteristics of light through a numerical value that corresponds to the color emitted by a light source, measured in degrees of Kelvin (K) on a scale from 1,000 to 10,000. More accurately. The color temperature of a light source is the temperature of an ideal backbody that radiates light of comparable hue to that of the light source. (more…)
LIGHTING
- 
Light and Matter : The 2018 theory of Physically-Based Rendering and Shading by AllegorithmicRead more: Light and Matter : The 2018 theory of Physically-Based Rendering and Shading by Allegorithmicacademy.substance3d.com/courses/the-pbr-guide-part-1 academy.substance3d.com/courses/the-pbr-guide-part-2 Local copy:
 
- 
Composition – These are the basic lighting techniques you need to know for photography and filmRead more: Composition – These are the basic lighting techniques you need to know for photography and filmhttp://www.diyphotography.net/basic-lighting-techniques-need-know-photography-film/ Amongst the basic techniques, there’s… 1- Side lighting – Literally how it sounds, lighting a subject from the side when they’re faced toward you 2- Rembrandt lighting – Here the light is at around 45 degrees over from the front of the subject, raised and pointing down at 45 degrees 3- Back lighting – Again, how it sounds, lighting a subject from behind. This can help to add drama with silouettes 4- Rim lighting – This produces a light glowing outline around your subject 5- Key light – The main light source, and it’s not necessarily always the brightest light source 6- Fill light – This is used to fill in the shadows and provide detail that would otherwise be blackness 7- Cross lighting – Using two lights placed opposite from each other to light two subjects 
- 
Photography basics: Exposure Value vs Photographic Exposure vs Il/Luminance vs Pixel luminance measurementsRead more: Photography basics: Exposure Value vs Photographic Exposure vs Il/Luminance vs Pixel luminance measurementsAlso see: https://www.pixelsham.com/2015/05/16/how-aperture-shutter-speed-and-iso-affect-your-photos/ 
 In photography, exposure value (EV) is a number that represents a combination of a camera’s shutter speed and f-number, such that all combinations that yield the same exposure have the same EV (for any fixed scene luminance). The EV concept was developed in an attempt to simplify choosing among combinations of equivalent camera settings. Although all camera settings with the same EV nominally give the same exposure, they do not necessarily give the same picture. EV is also used to indicate an interval on the photographic exposure scale. 1 EV corresponding to a standard power-of-2 exposure step, commonly referred to as a stop 
 EV 0 corresponds to an exposure time of 1 sec and a relative aperture of f/1.0. If the EV is known, it can be used to select combinations of exposure time and f-number.Note EV does not equal to photographic exposure. Photographic Exposure is defined as how much light hits the camera’s sensor. It depends on the camera settings mainly aperture and shutter speed. Exposure value (known as EV) is a number that represents the exposure setting of the camera. 
 Thus, strictly, EV is not a measure of luminance (indirect or reflected exposure) or illuminance (incidentl exposure); rather, an EV corresponds to a luminance (or illuminance) for which a camera with a given ISO speed would use the indicated EV to obtain the nominally correct exposure. Nonetheless, it is common practice among photographic equipment manufacturers to express luminance in EV for ISO 100 speed, as when specifying metering range or autofocus sensitivity.
 The exposure depends on two things: how much light gets through the lenses to the camera’s sensor and for how long the sensor is exposed. The former is a function of the aperture value while the latter is a function of the shutter speed. Exposure value is a number that represents this potential amount of light that could hit the sensor. It is important to understand that exposure value is a measure of how exposed the sensor is to light and not a measure of how much light actually hits the sensor. The exposure value is independent of how lit the scene is. For example a pair of aperture value and shutter speed represents the same exposure value both if the camera is used during a very bright day or during a dark night.
 Each exposure value number represents all the possible shutter and aperture settings that result in the same exposure. Although the exposure value is the same for different combinations of aperture values and shutter speeds the resulting photo can be very different (the aperture controls the depth of field while shutter speed controls how much motion is captured).
 EV 0.0 is defined as the exposure when setting the aperture to f-number 1.0 and the shutter speed to 1 second. All other exposure values are relative to that number. Exposure values are on a base two logarithmic scale. This means that every single step of EV – plus or minus 1 – represents the exposure (actual light that hits the sensor) being halved or doubled.Formulas(more…)
- 
Beeble Switchlight’s Plugin for Foundry NukeRead more: Beeble Switchlight’s Plugin for Foundry Nukehttps://www.cutout.pro/learn/beeble-switchlight/ https://www.switchlight-api.beeble.ai/pricing https://www.switchlight-api.beeble.ai https://github.com/beeble-ai/SwitchLight-Studio https://beeble.ai/terms-of-use https://www.switchlight-api.beeble.ai/docs 
- 
HDRI shooting and editing by Xuan Prada and Greg ZaalRead more: HDRI shooting and editing by Xuan Prada and Greg Zaalwww.xuanprada.com/blog/2014/11/3/hdri-shooting http://blog.gregzaal.com/2016/03/16/make-your-own-hdri/ http://blog.hdrihaven.com/how-to-create-high-quality-hdri/  Shooting checklist - Full coverage of the scene (fish-eye shots)
- Backplates for look-development (including ground or floor)
- Macbeth chart for white balance
- Grey ball for lighting calibration
- Chrome ball for lighting orientation
- Basic scene measurements
- Material samples
- Individual HDR artificial lighting sources if required
 Methodology (more…)
- 
Simulon – a Hollywood production studio app in the hands of an independent creator with access to consumer hardware, LDRi to HDRi through MLRead more: Simulon – a Hollywood production studio app in the hands of an independent creator with access to consumer hardware, LDRi to HDRi through MLDivesh Naidoo: The video below was made with a live in-camera preview and auto-exposure matching, no camera solve, no HDRI capture and no manual compositing setup. Using the new Simulon phone app. LDR to HDR through ML https://simulon.typeform.com/betatest (more…)Process example 
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
The Perils of Technical Debt – Understanding Its Impact on Security, Usability, and Stability
- 
Alejandro Villabón and Rafał Kaniewski – Recover Highlights With 8-Bit to High Dynamic Range Half Float Copycat – Nuke
- 
Photography basics: Exposure Value vs Photographic Exposure vs Il/Luminance vs Pixel luminance measurements
- 
FFmpeg – examples and convenience lines
- 
Top 3D Printing Website Resources
- 
Animation/VFX/Game Industry JOB POSTINGS by Chris Mayne
- 
Image rendering bit depth
- 
Survivorship Bias: The error resulting from systematically focusing on successes and ignoring failures. How a young statistician saved his planes during WW2.
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.





















![sRGB gamma correction test [gamma correction test]](http://www.madore.org/~david/misc/color/gammatest.png)










