COMPOSITION
- 
Photography basics: Camera Aspect Ratio, Sensor Size and Depth of Field – resolutionsRead more: Photography basics: Camera Aspect Ratio, Sensor Size and Depth of Field – resolutionshttp://www.shutterangle.com/2012/cinematic-look-aspect-ratio-sensor-size-depth-of-field/ http://www.shutterangle.com/2012/film-video-aspect-ratio-artistic-choice/ 
- 
Types of Film Lights and their efficiency – CRI, Color Temperature and Luminous EfficacyRead more: Types of Film Lights and their efficiency – CRI, Color Temperature and Luminous Efficacynofilmschool.com/types-of-film-lights “Not every light performs the same way. Lights and lighting are tricky to handle. You have to plan for every circumstance. But the good news is, lighting can be adjusted. Let’s look at different factors that affect lighting in every scene you shoot. “ 
 Use CRI, Luminous Efficacy and color temperature controls to match your needs.Color Temperature 
 Color temperature describes the “color” of white light by a light source radiated by a perfect black body at a given temperature measured in degrees Kelvinhttps://www.pixelsham.com/2019/10/18/color-temperature/ CRI 
 “The Color Rendering Index is a measurement of how faithfully a light source reveals the colors of whatever it illuminates, it describes the ability of a light source to reveal the color of an object, as compared to the color a natural light source would provide. The highest possible CRI is 100. A CRI of 100 generally refers to a perfect black body, like a tungsten light source or the sun. “https://www.studiobinder.com/blog/what-is-color-rendering-index (more…)
DESIGN
- 
The Hybrids by Phil Langer – hyper-realistic AI-generated human animal portraitsRead more: The Hybrids by Phil Langer – hyper-realistic AI-generated human animal portraitshttps://www.reddit.com/r/aiArt/comments/1azepd6/hybrid_portraits_by_phil_langer/ https://www.thehybridportraits.com/ https://www.instagram.com/hybridportraits/ 
COLOR
- 
THOMAS MANSENCAL – The Apparent Simplicity of RGB RenderingRead more: THOMAS MANSENCAL – The Apparent Simplicity of RGB Renderinghttps://thomasmansencal.substack.com/p/the-apparent-simplicity-of-rgb-rendering The primary goal of physically-based rendering (PBR) is to create a simulation that accurately reproduces the imaging process of electro-magnetic spectrum radiation incident to an observer. This simulation should be indistinguishable from reality for a similar observer. Because a camera is not sensitive to incident light the same way than a human observer, the images it captures are transformed to be colorimetric. A project might require infrared imaging simulation, a portion of the electro-magnetic spectrum that is invisible to us. Radically different observers might image the same scene but the act of observing does not change the intrinsic properties of the objects being imaged. Consequently, the physical modelling of the virtual scene should be independent of the observer. 
- 
Space bodies’ components and light spectroscopyRead more: Space bodies’ components and light spectroscopywww.plutorules.com/page-111-space-rocks.html This help’s us understand the composition of components in/on solar system bodies. Dips in the observed light spectrum, also known as, lines of absorption occur as gasses absorb energy from light at specific points along the light spectrum. These dips or darkened zones (lines of absorption) leave a finger print which identify elements and compounds. In this image the dark absorption bands appear as lines of emission which occur as the result of emitted not reflected (absorbed) light. Lines of absorption  Lines of emission Lines of emission    
- 
Victor Perez – The Color Management Handbook for Visual Effects ArtistsRead more: Victor Perez – The Color Management Handbook for Visual Effects ArtistsDigital Color Principles, Color Management Fundamentals & ACES Workflows 
- 
The Maya civilization and the color blueRead more: The Maya civilization and the color blueMaya blue is a highly unusual pigment because it is a mix of organic indigo and an inorganic clay mineral called palygorskite. 
 Echoing the color of an azure sky, the indelible pigment was used to accentuate everything from ceramics to human sacrifices in the Late Preclassic period (300 B.C. to A.D. 300).
 A team of researchers led by Dean Arnold, an adjunct curator of anthropology at the Field Museum in Chicago, determined that the key to Maya blue was actually a sacred incense called copal.
 By heating the mixture of indigo, copal and palygorskite over a fire, the Maya produced the unique pigment, he reported at the time. 
LIGHTING
- 
Composition – cinematography Cheat SheetRead more: Composition – cinematography Cheat Sheet Where is our eye attracted first? Why? Size. Focus. Lighting. Color. Size. Mr. White (Harvey Keitel) on the right. 
 Focus. He’s one of the two objects in focus.
 Lighting. Mr. White is large and in focus and Mr. Pink (Steve Buscemi) is highlighted by
 a shaft of light.
 Color. Both are black and white but the read on Mr. White’s shirt now really stands out.
 (more…)
 What type of lighting?
- 
Composition – These are the basic lighting techniques you need to know for photography and filmRead more: Composition – These are the basic lighting techniques you need to know for photography and filmhttp://www.diyphotography.net/basic-lighting-techniques-need-know-photography-film/ Amongst the basic techniques, there’s… 1- Side lighting – Literally how it sounds, lighting a subject from the side when they’re faced toward you 2- Rembrandt lighting – Here the light is at around 45 degrees over from the front of the subject, raised and pointing down at 45 degrees 3- Back lighting – Again, how it sounds, lighting a subject from behind. This can help to add drama with silouettes 4- Rim lighting – This produces a light glowing outline around your subject 5- Key light – The main light source, and it’s not necessarily always the brightest light source 6- Fill light – This is used to fill in the shadows and provide detail that would otherwise be blackness 7- Cross lighting – Using two lights placed opposite from each other to light two subjects 
- 
HDRI Median Cut pluginRead more: HDRI Median Cut pluginwww.hdrlabs.com/picturenaut/plugins.html  Note. The Median Cut algorithm is typically used for color quantization, which involves reducing the number of colors in an image while preserving its visual quality. It doesn’t directly provide a way to identify the brightest areas in an image. However, if you’re interested in identifying the brightest areas, you might want to look into other methods like thresholding, histogram analysis, or edge detection, through openCV for example. Here is an openCV example: (more…)
- 
Sun cone angle (angular diameter) as perceived by earth viewersRead more: Sun cone angle (angular diameter) as perceived by earth viewersAlso see: https://www.pixelsham.com/2020/08/01/solid-angle-measures/ The cone angle of the sun refers to the angular diameter of the sun as observed from Earth, which is related to the apparent size of the sun in the sky. The angular diameter of the sun, or the cone angle of the sunlight as perceived from Earth, is approximately 0.53 degrees on average. This value can vary slightly due to the elliptical nature of Earth’s orbit around the sun, but it generally stays within a narrow range. Here’s a more precise breakdown: - 
- Average Angular Diameter: About 0.53 degrees (31 arcminutes)
- Minimum Angular Diameter: Approximately 0.52 degrees (when Earth is at aphelion, the farthest point from the sun)
- Maximum Angular Diameter: Approximately 0.54 degrees (when Earth is at perihelion, the closest point to the sun)
 
 This angular diameter remains relatively constant throughout the day because the sun’s distance from Earth does not change significantly over a single day. To summarize, the cone angle of the sun’s light, or its angular diameter, is typically around 0.53 degrees, regardless of the time of day. https://en.wikipedia.org/wiki/Angular_diameter 
- 
- 
Custom bokeh in a raytraced DOF renderRead more: Custom bokeh in a raytraced DOF renderTo achieve a custom pinhole camera effect with a custom bokeh in Arnold Raytracer, you can follow these steps: - Set the render camera with a focal length around 50 (or as needed)
- Set the F-Stop to a high value (e.g., 22).
- Set the focus distance as you require
- Turn on DOF
- Place a plane a few cm in front of the camera.
- Texture the plane with a transparent shape at the center of it. (Transmission with no specular roughness)
 
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
Principles of Animation with Alan Becker, Dermot OConnor and Shaun Keenan
- 
Blender VideoDepthAI – Turn any video into 3D Animated Scenes
- 
WhatDreamsCost Spline-Path-Control – Create motion controls for ComfyUI
- 
What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?
- 
Steven Stahlberg – Perception and Composition
- 
Advanced Computer Vision with Python OpenCV and Mediapipe
- 
Photography basics: Solid Angle measures
- 
ComfyUI FLOAT – A container for FLOAT Generative Motion Latent Flow Matching for Audio-driven Talking Portrait – lip sync
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.






















 
 


















