COMPOSITION
- 
Composition – cinematography Cheat SheetRead more: Composition – cinematography Cheat Sheet Where is our eye attracted first? Why? Size. Focus. Lighting. Color. Size. Mr. White (Harvey Keitel) on the right. 
 Focus. He’s one of the two objects in focus.
 Lighting. Mr. White is large and in focus and Mr. Pink (Steve Buscemi) is highlighted by
 a shaft of light.
 Color. Both are black and white but the read on Mr. White’s shirt now really stands out.
 (more…)
 What type of lighting?
DESIGN
COLOR
- 
HDR and ColorRead more: HDR and Colorhttps://www.soundandvision.com/content/nits-and-bits-hdr-and-color In HD we often refer to the range of available colors as a color gamut. Such a color gamut is typically plotted on a two-dimensional diagram, called a CIE chart, as shown in at the top of this blog. Each color is characterized by its x/y coordinates. Good enough for government work, perhaps. But for HDR, with its higher luminance levels and wider color, the gamut becomes three-dimensional. For HDR the color gamut therefore becomes a characteristic we now call the color volume. It isn’t easy to show color volume on a two-dimensional medium like the printed page or a computer screen, but one method is shown below. As the luminance becomes higher, the picture eventually turns to white. As it becomes darker, it fades to black. The traditional color gamut shown on the CIE chart is simply a slice through this color volume at a selected luminance level, such as 50%. Three different color volumes—we still refer to them as color gamuts though their third dimension is important—are currently the most significant. The first is BT.709 (sometimes referred to as Rec.709), the color gamut used for pre-UHD/HDR formats, including standard HD. The largest is known as BT.2020; it encompasses (roughly) the range of colors visible to the human eye (though ET might find it insufficient!). Between these two is the color gamut used in digital cinema, known as DCI-P3. sRGB 
  D65 
  
- 
OLED vs QLED – What TV is better?Read more: OLED vs QLED – What TV is better?Supported by LG, Philips, Panasonic and Sony sell the OLED system TVs. 
 OLED stands for “organic light emitting diode.”
 It is a fundamentally different technology from LCD, the major type of TV today.
 OLED is “emissive,” meaning the pixels emit their own light.Samsung is branding its best TVs with a new acronym: “QLED” 
 QLED (according to Samsung) stands for “quantum dot LED TV.”
 It is a variation of the common LED LCD, adding a quantum dot film to the LCD “sandwich.”
 QLED, like LCD, is, in its current form, “transmissive” and relies on an LED backlight.OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks. QLED, as an improvement over OLED, significantly improves the picture quality. QLED can produce an even wider range of colors than OLED, which says something about this new tech. QLED is also known to produce up to 40% higher luminance efficiency than OLED technology. Further, many tests conclude that QLED is far more efficient in terms of power consumption than its predecessor, OLED. 
 (more…)
- 
What is a Gamut or Color Space and why do I need to know about CIERead more: What is a Gamut or Color Space and why do I need to know about CIE  http://www.xdcam-user.com/2014/05/what-is-a-gamut-or-color-space-and-why-do-i-need-to-know-about-it/ In video terms gamut is normally related to as the full range of colours and brightness that can be either captured or displayed. (more…)
- 
Stefan Ringelschwandtner – LUT Inspector toolRead more: Stefan Ringelschwandtner – LUT Inspector toolIt lets you load any .cube LUT right in your browser, see the RGB curves, and use a split view on the Granger Test Image to compare the original vs. LUT-applied version in real time — perfect for spotting hue shifts, saturation changes, and contrast tweaks. https://mononodes.com/lut-inspector/  
- 
RawTherapee – a free, open source, cross-platform raw image and HDRi processing programRead more: RawTherapee – a free, open source, cross-platform raw image and HDRi processing program5.10 of this tool includes excellent tools to clean up cr2 and cr3 used on set to support HDRI processing. 
 Converting raw to AcesCG 32 bit tiffs with metadata.
LIGHTING
- 
Open Source Nvidia OmniverseRead more: Open Source Nvidia Omniverseblogs.nvidia.com/blog/2019/03/18/omniverse-collaboration-platform/ developer.nvidia.com/nvidia-omniverse An open, Interactive 3D Design Collaboration Platform for Multi-Tool Workflows to simplify studio workflows for real-time graphics. It supports Pixar’s Universal Scene Description technology for exchanging information about modeling, shading, animation, lighting, visual effects and rendering across multiple applications. It also supports NVIDIA’s Material Definition Language, which allows artists to exchange information about surface materials across multiple tools. With Omniverse, artists can see live updates made by other artists working in different applications. They can also see changes reflected in multiple tools at the same time. For example an artist using Maya with a portal to Omniverse can collaborate with another artist using UE4 and both will see live updates of each others’ changes in their application. 
- 
7 Easy Portrait Lighting SetupsRead more: 7 Easy Portrait Lighting SetupsButterfly Loop Rembrandt Split Rim Broad Short 
- 
What is physically correct lighting all about?Read more: What is physically correct lighting all about?http://gamedev.stackexchange.com/questions/60638/what-is-physically-correct-lighting-all-about 2012-08 Nathan Reed wrote: Physically-based shading means leaving behind phenomenological models, like the Phong shading model, which are simply built to “look good” subjectively without being based on physics in any real way, and moving to lighting and shading models that are derived from the laws of physics and/or from actual measurements of the real world, and rigorously obey physical constraints such as energy conservation. For example, in many older rendering systems, shading models included separate controls for specular highlights from point lights and reflection of the environment via a cubemap. You could create a shader with the specular and the reflection set to wildly different values, even though those are both instances of the same physical process. In addition, you could set the specular to any arbitrary brightness, even if it would cause the surface to reflect more energy than it actually received. In a physically-based system, both the point light specular and the environment reflection would be controlled by the same parameter, and the system would be set up to automatically adjust the brightness of both the specular and diffuse components to maintain overall energy conservation. Moreover you would want to set the specular brightness to a realistic value for the material you’re trying to simulate, based on measurements. Physically-based lighting or shading includes physically-based BRDFs, which are usually based on microfacet theory, and physically correct light transport, which is based on the rendering equation (although heavily approximated in the case of real-time games). It also includes the necessary changes in the art process to make use of these features. Switching to a physically-based system can cause some upsets for artists. First of all it requires full HDR lighting with a realistic level of brightness for light sources, the sky, etc. and this can take some getting used to for the lighting artists. It also requires texture/material artists to do some things differently (particularly for specular), and they can be frustrated by the apparent loss of control (e.g. locking together the specular highlight and environment reflection as mentioned above; artists will complain about this). They will need some time and guidance to adapt to the physically-based system. On the plus side, once artists have adapted and gained trust in the physically-based system, they usually end up liking it better, because there are fewer parameters overall (less work for them to tweak). Also, materials created in one lighting environment generally look fine in other lighting environments too. This is unlike more ad-hoc models, where a set of material parameters might look good during daytime, but it comes out ridiculously glowy at night, or something like that. Here are some resources to look at for physically-based lighting in games: SIGGRAPH 2013 Physically Based Shading Course, particularly the background talk by Naty Hoffman at the beginning. You can also check out the previous incarnations of this course for more resources. Sébastien Lagarde, Adopting a physically-based shading model and Feeding a physically-based shading model And of course, I would be remiss if I didn’t mention Physically-Based Rendering by Pharr and Humphreys, an amazing reference on this whole subject and well worth your time, although it focuses on offline rather than real-time rendering. 
- 
Willem Zwarthoed – Aces gamut in VFX production pdfRead more: Willem Zwarthoed – Aces gamut in VFX production pdfhttps://www.provideocoalition.com/color-management-part-12-introducing-aces/ Local copy: 
 https://www.slideshare.net/hpduiker/acescg-a-common-color-encoding-for-visual-effects-applications 
- 
Disney’s Moana Island Scene – Free data setRead more: Disney’s Moana Island Scene – Free data sethttps://www.disneyanimation.com/resources/moana-island-scene/ This data set contains everything necessary to render a version of the Motunui island featured in the 2016 film Moana. 
- 
Outpost VFX lighting tipsRead more: Outpost VFX lighting tipswww.outpost-vfx.com/en/news/18-pro-tips-and-tricks-for-lighting Get as much information regarding your plate lighting as possible - Always use a reference
- Replicate what is happening in real life
- Invest into a solid HDRI
- Start Simple
- Observe real world lighting, photography and cinematography
- Don’t neglect the theory
- Learn the difference between realism and photo-realism.
- Keep your scenes organised
  
- 
HDRI shooting and editing by Xuan Prada and Greg ZaalRead more: HDRI shooting and editing by Xuan Prada and Greg Zaalwww.xuanprada.com/blog/2014/11/3/hdri-shooting http://blog.gregzaal.com/2016/03/16/make-your-own-hdri/ http://blog.hdrihaven.com/how-to-create-high-quality-hdri/  Shooting checklist - Full coverage of the scene (fish-eye shots)
- Backplates for look-development (including ground or floor)
- Macbeth chart for white balance
- Grey ball for lighting calibration
- Chrome ball for lighting orientation
- Basic scene measurements
- Material samples
- Individual HDR artificial lighting sources if required
 Methodology (more…)
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
Rec-2020 – TVs new color gamut standard used by Dolby Vision?
- 
Free fonts
- 
Glossary of Lighting Terms – cheat sheet
- 
Types of AI Explained in a few Minutes – AI Glossary
- 
STOP FCC – SAVE THE FREE NET
- 
Matt Gray – How to generate a profitable business
- 
Advanced Computer Vision with Python OpenCV and Mediapipe
- 
PixelSham – Introduction to Python 2022
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.


























