COMPOSITION
DESIGN
- 
Tokyo Prime 1 Studio 2022 + XM Studios Boots | Batman, Movies, Anime & Games Statues and CollectiblesRead more: Tokyo Prime 1 Studio 2022 + XM Studios Boots | Batman, Movies, Anime & Games Statues and Collectiblesnearly 140 statues at the booth from licenses including DC Comics, Lord of the Rings, Uncharted, The Last of Us, Bloodborne, Demon Souls, God of War, Jurassic Park, Godzilla, Predator, Aliens, Transformers, Berserk, Evangelion, My Hero Academia, Chainsaw Man, Attack on Titan, the DC movie universe, X-Men, Spider-man and much more 
COLOR
- 
Scene Referred vs Display Referred color workflowsRead more: Scene Referred vs Display Referred color workflowsDisplay Referred it is tied to the target hardware, as such it bakes color requirements into every type of media output request. Scene Referred uses a common unified wide gamut and targeting audience through CDL and DI libraries instead. 
 So that color information stays untouched and only “transformed” as/when needed.Sources: 
 – Victor Perez – Color Management Fundamentals & ACES Workflows in Nuke
 – https://z-fx.nl/ColorspACES.pdf
 – Wicus
 
- 
The Forbidden colors – Red-Green & Blue-Yellow: The Stunning Colors You Can’t SeeRead more: The Forbidden colors – Red-Green & Blue-Yellow: The Stunning Colors You Can’t Seewww.livescience.com/17948-red-green-blue-yellow-stunning-colors.html  While the human eye has red, green, and blue-sensing cones, those cones are cross-wired in the retina to produce a luminance channel plus a red-green and a blue-yellow channel, and it’s data in that color space (known technically as “LAB”) that goes to the brain. That’s why we can’t perceive a reddish-green or a yellowish-blue, whereas such colors can be represented in the RGB color space used by digital cameras. https://en.rockcontent.com/blog/the-use-of-yellow-in-data-design The back of the retina is covered in light-sensitive neurons known as cone cells and rod cells. There are three types of cone cells, each sensitive to different ranges of light. These ranges overlap, but for convenience the cones are referred to as blue (short-wavelength), green (medium-wavelength), and red (long-wavelength). The rod cells are primarily used in low-light situations, so we’ll ignore those for now. When light enters the eye and hits the cone cells, the cones get excited and send signals to the brain through the visual cortex. Different wavelengths of light excite different combinations of cones to varying levels, which generates our perception of color. You can see that the red cones are most sensitive to light, and the blue cones are least sensitive. The sensitivity of green and red cones overlaps for most of the visible spectrum.  Here’s how your brain takes the signals of light intensity from the cones and turns it into color information. To see red or green, your brain finds the difference between the levels of excitement in your red and green cones. This is the red-green channel. To get “brightness,” your brain combines the excitement of your red and green cones. This creates the luminance, or black-white, channel. To see yellow or blue, your brain then finds the difference between this luminance signal and the excitement of your blue cones. This is the yellow-blue channel. From the calculations made in the brain along those three channels, we get four basic colors: blue, green, yellow, and red. Seeing blue is what you experience when low-wavelength light excites the blue cones more than the green and red. Seeing green happens when light excites the green cones more than the red cones. Seeing red happens when only the red cones are excited by high-wavelength light. Here’s where it gets interesting. Seeing yellow is what happens when BOTH the green AND red cones are highly excited near their peak sensitivity. This is the biggest collective excitement that your cones ever have, aside from seeing pure white. Notice that yellow occurs at peak intensity in the graph to the right. Further, the lens and cornea of the eye happen to block shorter wavelengths, reducing sensitivity to blue and violet light. 
- 
Types of Film Lights and their efficiency – CRI, Color Temperature and Luminous EfficacyRead more: Types of Film Lights and their efficiency – CRI, Color Temperature and Luminous Efficacynofilmschool.com/types-of-film-lights “Not every light performs the same way. Lights and lighting are tricky to handle. You have to plan for every circumstance. But the good news is, lighting can be adjusted. Let’s look at different factors that affect lighting in every scene you shoot. “ 
 Use CRI, Luminous Efficacy and color temperature controls to match your needs.Color Temperature 
 Color temperature describes the “color” of white light by a light source radiated by a perfect black body at a given temperature measured in degrees Kelvinhttps://www.pixelsham.com/2019/10/18/color-temperature/ CRI 
 “The Color Rendering Index is a measurement of how faithfully a light source reveals the colors of whatever it illuminates, it describes the ability of a light source to reveal the color of an object, as compared to the color a natural light source would provide. The highest possible CRI is 100. A CRI of 100 generally refers to a perfect black body, like a tungsten light source or the sun. “https://www.studiobinder.com/blog/what-is-color-rendering-index (more…)
- 
Christopher Butler – Understanding the Eye-Mind Connection – Vision is a mental processRead more: Christopher Butler – Understanding the Eye-Mind Connection – Vision is a mental processhttps://www.chrbutler.com/understanding-the-eye-mind-connection The intricate relationship between the eyes and the brain, often termed the eye-mind connection, reveals that vision is predominantly a cognitive process. This understanding has profound implications for fields such as design, where capturing and maintaining attention is paramount. This essay delves into the nuances of visual perception, the brain’s role in interpreting visual data, and how this knowledge can be applied to effective design strategies. This cognitive aspect of vision is evident in phenomena such as optical illusions, where the brain interprets visual information in a way that contradicts physical reality. These illusions underscore that what we “see” is not merely a direct recording of the external world but a constructed experience shaped by cognitive processes. Understanding the cognitive nature of vision is crucial for effective design. Designers must consider how the brain processes visual information to create compelling and engaging visuals. This involves several key principles: - Attention and Engagement
- Visual Hierarchy
- Cognitive Load Management
- Context and Meaning
  
- 
GretagMacbeth Color Checker Numeric Values and Middle GrayRead more: GretagMacbeth Color Checker Numeric Values and Middle GrayThe human eye perceives half scene brightness not as the linear 50% of the present energy (linear nature values) but as 18% of the overall brightness. We are biased to perceive more information in the dark and contrast areas. A Macbeth chart helps with calibrating back into a photographic capture into this “human perspective” of the world. https://en.wikipedia.org/wiki/Middle_gray In photography, painting, and other visual arts, middle gray or middle grey is a tone that is perceptually about halfway between black and white on a lightness scale in photography and printing, it is typically defined as 18% reflectance in visible light  Light meters, cameras, and pictures are often calibrated using an 18% gray card[4][5][6] or a color reference card such as a ColorChecker. On the assumption that 18% is similar to the average reflectance of a scene, a grey card can be used to estimate the required exposure of the film. https://en.wikipedia.org/wiki/ColorChecker (more…)
LIGHTING
- 
Terminators and Iron Men: HDRI, Image-based lighting and physical shading at ILM – Siggraph 2010Read more: Terminators and Iron Men: HDRI, Image-based lighting and physical shading at ILM – Siggraph 2010
- 
Composition – These are the basic lighting techniques you need to know for photography and filmRead more: Composition – These are the basic lighting techniques you need to know for photography and filmhttp://www.diyphotography.net/basic-lighting-techniques-need-know-photography-film/ Amongst the basic techniques, there’s… 1- Side lighting – Literally how it sounds, lighting a subject from the side when they’re faced toward you 2- Rembrandt lighting – Here the light is at around 45 degrees over from the front of the subject, raised and pointing down at 45 degrees 3- Back lighting – Again, how it sounds, lighting a subject from behind. This can help to add drama with silouettes 4- Rim lighting – This produces a light glowing outline around your subject 5- Key light – The main light source, and it’s not necessarily always the brightest light source 6- Fill light – This is used to fill in the shadows and provide detail that would otherwise be blackness 7- Cross lighting – Using two lights placed opposite from each other to light two subjects 
- 
7 Easy Portrait Lighting SetupsRead more: 7 Easy Portrait Lighting SetupsButterfly Loop Rembrandt Split Rim Broad Short 
- 
What is the Light Field?Read more: What is the Light Field?http://lightfield-forum.com/what-is-the-lightfield/ The light field consists of the total of all light rays in 3D space, flowing through every point and in every direction. How to Record a Light Field- a single, robotically controlled camera
- a rotating arc of cameras
- an array of cameras or camera modules
- a single camera or camera lens fitted with a microlens array
 
- 
Practical Aspects of Spectral Data and LEDs in Digital Content Production and Virtual Production – SIGGRAPH 2022Read more: Practical Aspects of Spectral Data and LEDs in Digital Content Production and Virtual Production – SIGGRAPH 2022Comparison to the commercial side  https://www.ecolorled.com/blog/detail/what-is-rgb-rgbw-rgbic-strip-lights RGBW (RGB + White) LED strip uses a 4-in-1 LED chip made up of red, green, blue, and white. RGBWW (RGB + White + Warm White) LED strip uses either a 5-in-1 LED chip with red, green, blue, white, and warm white for color mixing. The only difference between RGBW and RGBWW is the intensity of the white color. The term RGBCCT consists of RGB and CCT. CCT (Correlated Color Temperature) means that the color temperature of the led strip light can be adjusted to change between warm white and white. Thus, RGBWW strip light is another name of RGBCCT strip. RGBCW is the acronym for Red, Green, Blue, Cold, and Warm. These 5-in-1 chips are used in supper bright smart LED lighting products 
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
Blender VideoDepthAI – Turn any video into 3D Animated Scenes
- 
Want to build a start up company that lasts? Think three-layer cake
- 
sRGB vs REC709 – An introduction and FFmpeg implementations
- 
Zibra.AI – Real-Time Volumetric Effects in Virtual Production. Now free for Indies!
- 
Guide to Prompt Engineering
- 
NVidia – High-Fidelity 3D Mesh Generation at Scale with Meshtron
- 
What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?
- 
Scene Referred vs Display Referred color workflows
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.











 
 


























