COMPOSITION
- 
StudioBinder – Roger Deakins on How to Choose a Camera Lens — Cinematography Composition TechniquesRead more: StudioBinder – Roger Deakins on How to Choose a Camera Lens — Cinematography Composition Techniqueshttps://www.studiobinder.com/blog/camera-lens-buying-guide/ https://www.studiobinder.com/blog/e-books/camera-lenses-explained-volume-1-ebook 
DESIGN
- 
- 
Realistic Avengers action figuresRead more: Realistic Avengers action figureshttp://kotaku.com/5911846/these-avengers-action-figures-look-so-real-youll-think-theyre-tiny-actors http://www.sideshowtoy.com/?page_id=37555&ref=Avengers2012 http://www.sideshowtoy.com/?page_id=4489&sku=9017301&ref=ref=avengersLP_9017301#!prettyPhoto/0/ http://animagetoyznews.blogspot.co.nz/ 
- 
James Gerde – The way the leaves dance in the rainRead more: James Gerde – The way the leaves dance in the rainhttps://www.instagram.com/gerdegotit/reel/C6s-2r2RgSu/ Since spending a lot of time recently with SDXL I’ve since made my way back to SD 1.5 While the models overall have less fidelity. There is just no comparing to the current motion models we have available for animatediff with 1.5 models. To date this is one of my favorite pieces. Not because I think it’s even the best it can be. But because the workflow adjustments unlocked some very important ideas I can’t wait to try out. Performance by @silkenkelly and @itxtheballerina on IG 
- 
Principles of Interior Design – BalanceRead more: Principles of Interior Design – Balancehttps://www.yankodesign.com/2024/09/18/principles-of-interior-design-balance The three types of balance include: - Symmetrical Balance
- Asymmetrical Balance
- Radial Balance
 
COLOR
LIGHTING
- 
What is physically correct lighting all about?Read more: What is physically correct lighting all about?http://gamedev.stackexchange.com/questions/60638/what-is-physically-correct-lighting-all-about 2012-08 Nathan Reed wrote: Physically-based shading means leaving behind phenomenological models, like the Phong shading model, which are simply built to “look good” subjectively without being based on physics in any real way, and moving to lighting and shading models that are derived from the laws of physics and/or from actual measurements of the real world, and rigorously obey physical constraints such as energy conservation. For example, in many older rendering systems, shading models included separate controls for specular highlights from point lights and reflection of the environment via a cubemap. You could create a shader with the specular and the reflection set to wildly different values, even though those are both instances of the same physical process. In addition, you could set the specular to any arbitrary brightness, even if it would cause the surface to reflect more energy than it actually received. In a physically-based system, both the point light specular and the environment reflection would be controlled by the same parameter, and the system would be set up to automatically adjust the brightness of both the specular and diffuse components to maintain overall energy conservation. Moreover you would want to set the specular brightness to a realistic value for the material you’re trying to simulate, based on measurements. Physically-based lighting or shading includes physically-based BRDFs, which are usually based on microfacet theory, and physically correct light transport, which is based on the rendering equation (although heavily approximated in the case of real-time games). It also includes the necessary changes in the art process to make use of these features. Switching to a physically-based system can cause some upsets for artists. First of all it requires full HDR lighting with a realistic level of brightness for light sources, the sky, etc. and this can take some getting used to for the lighting artists. It also requires texture/material artists to do some things differently (particularly for specular), and they can be frustrated by the apparent loss of control (e.g. locking together the specular highlight and environment reflection as mentioned above; artists will complain about this). They will need some time and guidance to adapt to the physically-based system. On the plus side, once artists have adapted and gained trust in the physically-based system, they usually end up liking it better, because there are fewer parameters overall (less work for them to tweak). Also, materials created in one lighting environment generally look fine in other lighting environments too. This is unlike more ad-hoc models, where a set of material parameters might look good during daytime, but it comes out ridiculously glowy at night, or something like that. Here are some resources to look at for physically-based lighting in games: SIGGRAPH 2013 Physically Based Shading Course, particularly the background talk by Naty Hoffman at the beginning. You can also check out the previous incarnations of this course for more resources. Sébastien Lagarde, Adopting a physically-based shading model and Feeding a physically-based shading model And of course, I would be remiss if I didn’t mention Physically-Based Rendering by Pharr and Humphreys, an amazing reference on this whole subject and well worth your time, although it focuses on offline rather than real-time rendering. 
- 
Convert between light exposure and intensityRead more: Convert between light exposure and intensityimport math,sys def Exposure2Intensity(exposure): exp = float(exposure) result = math.pow(2,exp) print(result) Exposure2Intensity(0) def Intensity2Exposure(intensity): inarg = float(intensity) if inarg == 0: print("Exposure of zero intensity is undefined.") return if inarg < 1e-323: inarg = max(inarg, 1e-323) print("Exposure of negative intensities is undefined. Clamping to a very small value instead (1e-323)") result = math.log(inarg, 2) print(result) Intensity2Exposure(0.1)Why Exposure?Exposure is a stop value that multiplies the intensity by 2 to the power of the stop. Increasing exposure by 1 results in double the amount of light. 
 Artists think in “stops.” Doubling or halving brightness is easy math and common in grading and look-dev.
 Exposure counts doublings in whole stops:- +1 stop = ×2 brightness
- −1 stop = ×0.5 brightness
 This gives perceptually even controls across both bright and dark values. 
 Why Intensity?Intensity is linear. 
 It’s what render engines and compositors expect when:- Summing values
- Averaging pixels
- Multiplying or filtering pixel data
 Use intensity when you need the actual math on pixel/light data. 
 Formulas (from your Python)- Intensity from exposure: intensity = 2**exposure
- Exposure from intensity: exposure = log₂(intensity)
 Guardrails: - Intensity must be > 0 to compute exposure.
- If intensity = 0 → exposure is undefined.
- Clamp tiny values (e.g. 1e−323) before using log₂.
 
 Use Exposure (stops) when…- You want artist-friendly sliders (−5…+5 stops)
- Adjusting look-dev or grading in even stops
- Matching plates with quick ±1 stop tweaks
- Tweening brightness changes smoothly across ranges
 
 Use Intensity (linear) when…- Storing raw pixel/light values
- Multiplying textures or lights by a gain
- Performing sums, averages, and filters
- Feeding values to render engines expecting linear data
 
 Examples- +2 stops → 2**2 = 4.0 (×4)
- +1 stop → 2**1 = 2.0 (×2)
- 0 stop → 2**0 = 1.0 (×1)
- −1 stop → 2**(−1) = 0.5 (×0.5)
- −2 stops → 2**(−2) = 0.25 (×0.25)
- Intensity 0.1 → exposure = log₂(0.1) ≈ −3.32
 
 Rule of thumbThink in stops (exposure) for controls and matching. 
 Compute in linear (intensity) for rendering and math.
- 
Magnific.ai Relight – change the entire lighting of a sceneRead more: Magnific.ai Relight – change the entire lighting of a sceneIt’s a new Magnific spell that allows you to change the entire lighting of a scene and, optionally, the background with just: 1/ A prompt OR 
 2/ A reference image OR
 3/ A light map (drawing your own lights)https://x.com/javilopen/status/1805274155065176489 
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
Zibra.AI – Real-Time Volumetric Effects in Virtual Production. Now free for Indies!
- 
Methods for creating motion blur in Stop motion
- 
Game Development tips
- 
AI and the Law – Netflix : Using Generative AI in Content Production
- 
PixelSham – Introduction to Python 2022
- 
Mastering The Art Of Photography – PixelSham.com Photography Basics
- 
Matt Gray – How to generate a profitable business
- 
Guide to Prompt Engineering
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.




























