COMPOSITION
DESIGN
COLOR
- 
Yasuharu YOSHIZAWA – Comparison of sRGB vs ACREScg in NukeRead more: Yasuharu YOSHIZAWA – Comparison of sRGB vs ACREScg in NukeAnswering the question that is often asked, “Do I need to use ACEScg to display an sRGB monitor in the end?” (Demonstration shown at an in-house seminar) 
 Comparison of scanlineRender output with extreme color lights on color charts with sRGB/ACREScg in color – OCIO -working space in NukeDownload the Nuke script: 
- 
No one could see the colour blue until modern timesRead more: No one could see the colour blue until modern timeshttps://www.businessinsider.com/what-is-blue-and-how-do-we-see-color-2015-2  The way humans see the world… until we have a way to describe something, even something so fundamental as a colour, we may not even notice that something it’s there. Ancient languages didn’t have a word for blue — not Greek, not Chinese, not Japanese, not Hebrew, not Icelandic cultures. And without a word for the colour, there’s evidence that they may not have seen it at all. 
 https://www.wnycstudios.org/story/211119-colorsEvery language first had a word for black and for white, or dark and light. The next word for a colour to come into existence — in every language studied around the world — was red, the colour of blood and wine. 
 After red, historically, yellow appears, and later, green (though in a couple of languages, yellow and green switch places). The last of these colours to appear in every language is blue.The only ancient culture to develop a word for blue was the Egyptians — and as it happens, they were also the only culture that had a way to produce a blue dye. 
 https://mymodernmet.com/shades-of-blue-color-history/True blue hues are rare in the natural world because synthesizing pigments that absorb longer-wavelength light (reds and yellows) while reflecting shorter-wavelength blue light requires exceptionally elaborate molecular structures—biochemical feats that most plants and animals simply don’t undertake. When you gaze at a blueberry’s deep blue surface, you’re actually seeing structural coloration rather than a true blue pigment. A fine, waxy bloom on the berry’s skin contains nanostructures that preferentially scatter blue and violet light, giving the fruit its signature blue sheen even though its inherent pigment is reddish. Similarly, many of nature’s most striking blues—like those of blue jays and morpho butterflies—arise not from blue pigments but from microscopic architectures in feathers or wing scales. These tiny ridges and air pockets manipulate incoming light so that blue wavelengths emerge most prominently, creating vivid, angle-dependent colors through scattering rather than pigment alone. (more…)
- 
If a blind person gained sight, could they recognize objects previously touched?Read more: If a blind person gained sight, could they recognize objects previously touched?Blind people who regain their sight may find themselves in a world they don’t immediately comprehend. “It would be more like a sighted person trying to rely on tactile information,” Moore says. Learning to see is a developmental process, just like learning language, Prof Cathleen Moore continues. “As far as vision goes, a three-and-a-half year old child is already a well-calibrated system.” 
- 
Tim Kang – calibrated white light values in sRGB color spaceRead more: Tim Kang – calibrated white light values in sRGB color space8bit sRGB encoded 
 2000K 255 139 22
 2700K 255 172 89
 3000K 255 184 109
 3200K 255 190 122
 4000K 255 211 165
 4300K 255 219 178
 D50 255 235 205
 D55 255 243 224
 D5600 255 244 227
 D6000 255 249 240
 D65 255 255 255
 D10000 202 221 255
 D20000 166 196 2558bit Rec709 Gamma 2.4 
 2000K 255 145 34
 2700K 255 177 97
 3000K 255 187 117
 3200K 255 193 129
 4000K 255 214 170
 4300K 255 221 182
 D50 255 236 208
 D55 255 243 226
 D5600 255 245 229
 D6000 255 250 241
 D65 255 255 255
 D10000 204 222 255
 D20000 170 199 2558bit Display P3 encoded 
 2000K 255 154 63
 2700K 255 185 109
 3000K 255 195 127
 3200K 255 201 138
 4000K 255 219 176
 4300K 255 225 187
 D50 255 239 212
 D55 255 245 228
 D5600 255 246 231
 D6000 255 251 242
 D65 255 255 255
 D10000 208 223 255
 D20000 175 199 25510bit Rec2020 PQ (100 nits) 
 2000K 520 435 273
 2700K 520 466 358
 3000K 520 475 384
 3200K 520 480 399
 4000K 520 495 446
 4300K 520 500 458
 D50 520 510 482
 D55 520 514 497
 D5600 520 514 500
 D6000 520 517 509
 D65 520 520 520
 D10000 479 489 520
 D20000 448 464 520
- 
Types of Film Lights and their efficiency – CRI, Color Temperature and Luminous EfficacyRead more: Types of Film Lights and their efficiency – CRI, Color Temperature and Luminous Efficacynofilmschool.com/types-of-film-lights “Not every light performs the same way. Lights and lighting are tricky to handle. You have to plan for every circumstance. But the good news is, lighting can be adjusted. Let’s look at different factors that affect lighting in every scene you shoot. “ 
 Use CRI, Luminous Efficacy and color temperature controls to match your needs.Color Temperature 
 Color temperature describes the “color” of white light by a light source radiated by a perfect black body at a given temperature measured in degrees Kelvinhttps://www.pixelsham.com/2019/10/18/color-temperature/ CRI 
 “The Color Rendering Index is a measurement of how faithfully a light source reveals the colors of whatever it illuminates, it describes the ability of a light source to reveal the color of an object, as compared to the color a natural light source would provide. The highest possible CRI is 100. A CRI of 100 generally refers to a perfect black body, like a tungsten light source or the sun. “https://www.studiobinder.com/blog/what-is-color-rendering-index (more…)
- 
Björn Ottosson – How software gets color wrongRead more: Björn Ottosson – How software gets color wronghttps://bottosson.github.io/posts/colorwrong/ Most software around us today are decent at accurately displaying colors. Processing of colors is another story unfortunately, and is often done badly. To understand what the problem is, let’s start with an example of three ways of blending green and magenta: - Perceptual blend – A smooth transition using a model designed to mimic human perception of color. The blending is done so that the perceived brightness and color varies smoothly and evenly.
- Linear blend – A model for blending color based on how light behaves physically. This type of blending can occur in many ways naturally, for example when colors are blended together by focus blur in a camera or when viewing a pattern of two colors at a distance.
- sRGB blend – This is how colors would normally be blended in computer software, using sRGB to represent the colors.
 Let’s look at some more examples of blending of colors, to see how these problems surface more practically. The examples use strong colors since then the differences are more pronounced. This is using the same three ways of blending colors as the first example. Instead of making it as easy as possible to work with color, most software make it unnecessarily hard, by doing image processing with representations not designed for it. Approximating the physical behavior of light with linear RGB models is one easy thing to do, but more work is needed to create image representations tailored for image processing and human perception. Also see: 
LIGHTING
- 
Debayer – A free command line tool to convert camera raw images into scene-linear exrRead more: Debayer – A free command line tool to convert camera raw images into scene-linear exr https://github.com/jedypod/debayer The only required dependency is oiiotool. However other “debayer engines” are also supported. - OpenImageIO – oiiotool is used for converting debayered tif images to exr.
- Debayer Engines
- RawTherapee – Powerful raw development software used to decode raw images. High quality, good selection of debayer algorithms, and more advanced raw processing like chromatic aberration removal.
- LibRaw – dcraw_emu commandline utility included with LibRaw. Optional alternative for debayer. Simple, fast and effective.
- Darktable – Uses darktable-cli plus an xmp config to process.
- vkdt – uses vkdt-cli to debayer. Pretty experimental still. Uses Vulkan for image processing. Stupidly fast. Pretty limited.
 
 
- 
Fast, optimized ‘for’ pixel loops with OpenCV and Python to create tone mapped HDR imagesRead more: Fast, optimized ‘for’ pixel loops with OpenCV and Python to create tone mapped HDR imageshttps://pyimagesearch.com/2017/08/28/fast-optimized-for-pixel-loops-with-opencv-and-python/ https://learnopencv.com/exposure-fusion-using-opencv-cpp-python/ Exposure Fusion is a method for combining images taken with different exposure settings into one image that looks like a tone mapped High Dynamic Range (HDR) image. 
- 
Arto T. – A workflow for creating photorealistic, equirectangular 360° panoramas in ComfyUI using FluxRead more: Arto T. – A workflow for creating photorealistic, equirectangular 360° panoramas in ComfyUI using Fluxhttps://civitai.com/models/735980/flux-equirectangular-360-panorama https://civitai.com/models/745010?modelVersionId=833115 The trigger phrase is “equirectangular 360 degree panorama”. I would avoid saying “spherical projection” since that tends to result in non-equirectangular spherical images. Image resolution should always be a 2:1 aspect ratio. 1024 x 512 or 1408 x 704 work quite well and were used in the training data. 2048 x 1024 also works. I suggest using a weight of 0.5 – 1.5. If you are having issues with the image generating too flat instead of having the necessary spherical distortion, try increasing the weight above 1, though this could negatively impact small details of the image. For Flux guidance, I recommend a value of about 2.5 for realistic scenes. 8-bit output at the moment   
- 
Neural Microfacet Fields for Inverse RenderingRead more: Neural Microfacet Fields for Inverse Renderinghttps://half-potato.gitlab.io/posts/nmf/ 
- 
Terminators and Iron Men: HDRI, Image-based lighting and physical shading at ILM – Siggraph 2010Read more: Terminators and Iron Men: HDRI, Image-based lighting and physical shading at ILM – Siggraph 2010
- 
Bella – Fast Spectral RenderingRead more: Bella – Fast Spectral RenderingBella works in spectral space, allowing effects such as BSDF wavelength dependency, diffraction, or atmosphere to be modeled far more accurately than in color space. https://superrendersfarm.com/blog/uncategorized/bella-a-new-spectral-physically-based-renderer/ 
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
Godot Cheat Sheets
- 
Top 3D Printing Website Resources
- 
NVidia – High-Fidelity 3D Mesh Generation at Scale with Meshtron
- 
VFX pipeline – Render Wall Farm management topics
- 
Free fonts
- 
Decart AI Mirage – The first ever World Transformation Model – turning any video, game, or camera feed into a new digital world, in real time
- 
Daniele Tosti Interview for the magazine InCG, Taiwan, Issue 28, 201609
- 
Most common ways to smooth 3D prints
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.












































