COMPOSITION
- 
Photography basics: Depth of Field and compositionRead more: Photography basics: Depth of Field and compositionDepth of field is the range within which focusing is resolved in a photo. 
 Aperture has a huge affect on to the depth of field.Changing the f-stops (f/#) of a lens will change aperture and as such the DOF. f-stops are a just certain number which is telling you the size of the aperture. That’s how f-stop is related to aperture (and DOF). If you increase f-stops, it will increase DOF, the area in focus (and decrease the aperture). On the other hand, decreasing the f-stop it will decrease DOF (and increase the aperture). The red cone in the figure is an angular representation of the resolution of the system. Versus the dotted lines, which indicate the aperture coverage. Where the lines of the two cones intersect defines the total range of the depth of field. This image explains why the longer the depth of field, the greater the range of clarity. 
DESIGN
- 
Mariko Mori – Kamitate Stone at Sean Kelly GalleryRead more: Mariko Mori – Kamitate Stone at Sean Kelly GalleryMariko Mori, the internationally celebrated artist who blends technology, spirituality, and nature, debuts Kamitate Stone I this October at Sean Kelly Gallery in New York. The work continues her exploration of luminous form, energy, and transcendence. 
- 
James Gerde – The way the leaves dance in the rainRead more: James Gerde – The way the leaves dance in the rainhttps://www.instagram.com/gerdegotit/reel/C6s-2r2RgSu/ Since spending a lot of time recently with SDXL I’ve since made my way back to SD 1.5 While the models overall have less fidelity. There is just no comparing to the current motion models we have available for animatediff with 1.5 models. To date this is one of my favorite pieces. Not because I think it’s even the best it can be. But because the workflow adjustments unlocked some very important ideas I can’t wait to try out. Performance by @silkenkelly and @itxtheballerina on IG 
COLOR
- 
About color: What is a LUTRead more: About color: What is a LUThttp://www.lightillusion.com/luts.html https://www.shutterstock.com/blog/how-use-luts-color-grading A LUT (Lookup Table) is essentially the modifier between two images, the original image and the displayed image, based on a mathematical formula. Basically conversion matrices of different complexities. There are different types of LUTS – viewing, transform, calibration, 1D and 3D. 
- 
Anders Langlands – Render Color SpacesRead more: Anders Langlands – Render Color Spaceshttps://www.colour-science.org/anders-langlands/ This page compares images rendered in Arnold using spectral rendering and different sets of colourspace primaries: Rec.709, Rec.2020, ACES and DCI-P3. The SPD data for the GretagMacbeth Color Checker are the measurements of Noburu Ohta, taken from Mansencal, Mauderer and Parsons (2014) colour-science.org. 
- 
Colour – MacBeth Chart Checker DetectionRead more: Colour – MacBeth Chart Checker Detectiongithub.com/colour-science/colour-checker-detection A Python package implementing various colour checker detection algorithms and related utilities.  
- 
If a blind person gained sight, could they recognize objects previously touched?Read more: If a blind person gained sight, could they recognize objects previously touched?Blind people who regain their sight may find themselves in a world they don’t immediately comprehend. “It would be more like a sighted person trying to rely on tactile information,” Moore says. Learning to see is a developmental process, just like learning language, Prof Cathleen Moore continues. “As far as vision goes, a three-and-a-half year old child is already a well-calibrated system.” 
LIGHTING
- 
Cinematographers Blueprint 300dpi posterRead more: Cinematographers Blueprint 300dpi posterThe 300dpi digital poster is now available to all PixelSham.com subscribers. If you have already subscribed and wish a copy, please send me a note through the contact page. 
- 
What is physically correct lighting all about?Read more: What is physically correct lighting all about?http://gamedev.stackexchange.com/questions/60638/what-is-physically-correct-lighting-all-about 2012-08 Nathan Reed wrote: Physically-based shading means leaving behind phenomenological models, like the Phong shading model, which are simply built to “look good” subjectively without being based on physics in any real way, and moving to lighting and shading models that are derived from the laws of physics and/or from actual measurements of the real world, and rigorously obey physical constraints such as energy conservation. For example, in many older rendering systems, shading models included separate controls for specular highlights from point lights and reflection of the environment via a cubemap. You could create a shader with the specular and the reflection set to wildly different values, even though those are both instances of the same physical process. In addition, you could set the specular to any arbitrary brightness, even if it would cause the surface to reflect more energy than it actually received. In a physically-based system, both the point light specular and the environment reflection would be controlled by the same parameter, and the system would be set up to automatically adjust the brightness of both the specular and diffuse components to maintain overall energy conservation. Moreover you would want to set the specular brightness to a realistic value for the material you’re trying to simulate, based on measurements. Physically-based lighting or shading includes physically-based BRDFs, which are usually based on microfacet theory, and physically correct light transport, which is based on the rendering equation (although heavily approximated in the case of real-time games). It also includes the necessary changes in the art process to make use of these features. Switching to a physically-based system can cause some upsets for artists. First of all it requires full HDR lighting with a realistic level of brightness for light sources, the sky, etc. and this can take some getting used to for the lighting artists. It also requires texture/material artists to do some things differently (particularly for specular), and they can be frustrated by the apparent loss of control (e.g. locking together the specular highlight and environment reflection as mentioned above; artists will complain about this). They will need some time and guidance to adapt to the physically-based system. On the plus side, once artists have adapted and gained trust in the physically-based system, they usually end up liking it better, because there are fewer parameters overall (less work for them to tweak). Also, materials created in one lighting environment generally look fine in other lighting environments too. This is unlike more ad-hoc models, where a set of material parameters might look good during daytime, but it comes out ridiculously glowy at night, or something like that. Here are some resources to look at for physically-based lighting in games: SIGGRAPH 2013 Physically Based Shading Course, particularly the background talk by Naty Hoffman at the beginning. You can also check out the previous incarnations of this course for more resources. Sébastien Lagarde, Adopting a physically-based shading model and Feeding a physically-based shading model And of course, I would be remiss if I didn’t mention Physically-Based Rendering by Pharr and Humphreys, an amazing reference on this whole subject and well worth your time, although it focuses on offline rather than real-time rendering. 
- 
Unity 3D resourcesRead more: Unity 3D resources http://answers.unity3d.com/questions/12321/how-can-i-start-learning-unity-fast-list-of-tutori.html If you have no previous experience with Unity, start with these six video tutorials which give a quick overview of the Unity interface and some important features http://unity3d.com/support/documentation/video/ 
- 
Custom bokeh in a raytraced DOF renderRead more: Custom bokeh in a raytraced DOF renderTo achieve a custom pinhole camera effect with a custom bokeh in Arnold Raytracer, you can follow these steps: - Set the render camera with a focal length around 50 (or as needed)
- Set the F-Stop to a high value (e.g., 22).
- Set the focus distance as you require
- Turn on DOF
- Place a plane a few cm in front of the camera.
- Texture the plane with a transparent shape at the center of it. (Transmission with no specular roughness)
 
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
WhatDreamsCost Spline-Path-Control – Create motion controls for ComfyUI
- 
AnimationXpress.com interviews Daniele Tosti for TheCgCareer.com channel
- 
3D Gaussian Splatting step by step beginner course
- 
Photography basics: Production Rendering Resolution Charts
- 
Sensitivity of human eye
- 
Rec-2020 – TVs new color gamut standard used by Dolby Vision?
- 
Photography basics: Color Temperature and White Balance
- 
Cinematographers Blueprint 300dpi poster
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.












































