COMPOSITION
- 
Photography basics: Camera Aspect Ratio, Sensor Size and Depth of Field – resolutionsRead more: Photography basics: Camera Aspect Ratio, Sensor Size and Depth of Field – resolutionshttp://www.shutterangle.com/2012/cinematic-look-aspect-ratio-sensor-size-depth-of-field/ http://www.shutterangle.com/2012/film-video-aspect-ratio-artistic-choice/ 
- 
Christopher Butler – Understanding the Eye-Mind Connection – Vision is a mental processRead more: Christopher Butler – Understanding the Eye-Mind Connection – Vision is a mental processhttps://www.chrbutler.com/understanding-the-eye-mind-connection The intricate relationship between the eyes and the brain, often termed the eye-mind connection, reveals that vision is predominantly a cognitive process. This understanding has profound implications for fields such as design, where capturing and maintaining attention is paramount. This essay delves into the nuances of visual perception, the brain’s role in interpreting visual data, and how this knowledge can be applied to effective design strategies. This cognitive aspect of vision is evident in phenomena such as optical illusions, where the brain interprets visual information in a way that contradicts physical reality. These illusions underscore that what we “see” is not merely a direct recording of the external world but a constructed experience shaped by cognitive processes. Understanding the cognitive nature of vision is crucial for effective design. Designers must consider how the brain processes visual information to create compelling and engaging visuals. This involves several key principles: - Attention and Engagement
- Visual Hierarchy
- Cognitive Load Management
- Context and Meaning
  
- 
Photography basics: Depth of Field and compositionRead more: Photography basics: Depth of Field and compositionDepth of field is the range within which focusing is resolved in a photo. 
 Aperture has a huge affect on to the depth of field.Changing the f-stops (f/#) of a lens will change aperture and as such the DOF. f-stops are a just certain number which is telling you the size of the aperture. That’s how f-stop is related to aperture (and DOF). If you increase f-stops, it will increase DOF, the area in focus (and decrease the aperture). On the other hand, decreasing the f-stop it will decrease DOF (and increase the aperture). The red cone in the figure is an angular representation of the resolution of the system. Versus the dotted lines, which indicate the aperture coverage. Where the lines of the two cones intersect defines the total range of the depth of field. This image explains why the longer the depth of field, the greater the range of clarity. 
DESIGN
- 
Mania Carta – Photorealistic Characters Made in BlenderRead more: Mania Carta – Photorealistic Characters Made in BlenderManiacarta is an Artist based in Tokyo, her Artworks are unique and she strive to create the best characters that have soul in the World. https://80.lv/articles/marvelous-photorealistic-characters-made-in-blender-by-mania-carta/ https://www.instagram.com/mania_carta/     
COLOR
- 
PTGui 13 beta adds control through a Patch EditorRead more: PTGui 13 beta adds control through a Patch EditorAdditions: - Patch Editor (PTGui Pro)
- DNG output
- Improved RAW / DNG handling
- JPEG 2000 support
- Performance improvements
 
- 
Scientists claim to have discovered ‘new colour’ no one has seen before: OloRead more: Scientists claim to have discovered ‘new colour’ no one has seen before: Olohttps://www.bbc.com/news/articles/clyq0n3em41o By stimulating specific cells in the retina, the participants claim to have witnessed a blue-green colour that scientists have called “olo”, but some experts have said the existence of a new colour is “open to argument”. The findings, published in the journal Science Advances on Friday, have been described by the study’s co-author, Prof Ren Ng from the University of California, as “remarkable”.  (A) System inputs. (i) Retina map of 103 cone cells preclassified by spectral type (7). (ii) Target visual percept (here, a video of a child, see movie S1 at 1:04). (iii) Infrared cellular-scale imaging of the retina with 60-frames-per-second rolling shutter. Fixational eye movement is visible over the three frames shown. (B) System outputs. (iv) Real-time per-cone target activation levels to reproduce the target percept, computed by: extracting eye motion from the input video relative to the retina map; identifying the spectral type of every cone in the field of view; computing the per-cone activation the target percept would have produced. (v) Intensities of visible-wavelength 488-nm laser microdoses at each cone required to achieve its target activation level. (C) Infrared imaging and visible-wavelength stimulation are physically accomplished in a raster scan across the retinal region using AOSLO. By modulating the visible-wavelength beam’s intensity, the laser microdoses shown in (v) are delivered. Drawing adapted with permission [Harmening and Sincich (54)]. (D) Examples of target percepts with corresponding cone activations and laser microdoses, ranging from colored squares to complex imagery. Teal-striped regions represent the color “olo” of stimulating only M cones. 
- 
What is a Gamut or Color Space and why do I need to know about CIERead more: What is a Gamut or Color Space and why do I need to know about CIE  http://www.xdcam-user.com/2014/05/what-is-a-gamut-or-color-space-and-why-do-i-need-to-know-about-it/ In video terms gamut is normally related to as the full range of colours and brightness that can be either captured or displayed. (more…)
- 
Gamma correctionRead more: Gamma correction http://www.normankoren.com/makingfineprints1A.html#Gammabox https://en.wikipedia.org/wiki/Gamma_correction http://www.photoscientia.co.uk/Gamma.htm https://www.w3.org/Graphics/Color/sRGB.html http://www.eizoglobal.com/library/basics/lcd_display_gamma/index.html https://forum.reallusion.com/PrintTopic308094.aspx Basically, gamma is the relationship between the brightness of a pixel as it appears on the screen, and the numerical value of that pixel. Generally Gamma is just about defining relationships. Three main types: 
 – Image Gamma encoded in images
 – Display Gammas encoded in hardware and/or viewing time
 – System or Viewing Gamma which is the net effect of all gammas when you look back at a final image. In theory this should flatten back to 1.0 gamma.
 (more…)
- 
Mysterious animation wins best illusion of 2011 – Motion silencing illusionRead more: Mysterious animation wins best illusion of 2011 – Motion silencing illusionThe 2011 Best Illusion of the Year uses motion to render color changes invisible, and so reveals a quirk in our visual systems that is new to scientists. https://en.wikipedia.org/wiki/Motion_silencing_illusion “It is a really beautiful effect, revealing something about how our visual system works that we didn’t know before,” said Daniel Simons, a professor at the University of Illinois, Champaign-Urbana. Simons studies visual cognition, and did not work on this illusion. Before its creation, scientists didn’t know that motion had this effect on perception, Simons said. A viewer stares at a speck at the center of a ring of colored dots, which continuously change color. When the ring begins to rotate around the speck, the color changes appear to stop. But this is an illusion. For some reason, the motion causes our visual system to ignore the color changes. (You can, however, see the color changes if you follow the rotating circles with your eyes.) 
- 
What is OLED and what can it do for your TVRead more: What is OLED and what can it do for your TVhttps://www.cnet.com/news/what-is-oled-and-what-can-it-do-for-your-tv/ OLED stands for Organic Light Emitting Diode. Each pixel in an OLED display is made of a material that glows when you jab it with electricity. Kind of like the heating elements in a toaster, but with less heat and better resolution. This effect is called electroluminescence, which is one of those delightful words that is big, but actually makes sense: “electro” for electricity, “lumin” for light and “escence” for, well, basically “essence.” OLED TV marketing often claims “infinite” contrast ratios, and while that might sound like typical hyperbole, it’s one of the extremely rare instances where such claims are actually true. Since OLED can produce a perfect black, emitting no light whatsoever, its contrast ratio (expressed as the brightest white divided by the darkest black) is technically infinite. OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks. 
- 
What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?Read more: What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?https://www.discovery.com/science/mexapixels-in-human-eye About 576 megapixels for the entire field of view. Consider a view in front of you that is 90 degrees by 90 degrees, like looking through an open window at a scene. The number of pixels would be: 
 90 degrees * 60 arc-minutes/degree * 1/0.3 * 90 * 60 * 1/0.3 = 324,000,000 pixels (324 megapixels).At any one moment, you actually do not perceive that many pixels, but your eye moves around the scene to see all the detail you want. But the human eye really sees a larger field of view, close to 180 degrees. Let’s be conservative and use 120 degrees for the field of view. Then we would see: 120 * 120 * 60 * 60 / (0.3 * 0.3) = 576 megapixels. Or. 7 megapixels for the 2 degree focus arc… + 1 megapixel for the rest. https://clarkvision.com/articles/eye-resolution.html Details in the post 
LIGHTING
- 
HDRI shooting and editing by Xuan Prada and Greg ZaalRead more: HDRI shooting and editing by Xuan Prada and Greg Zaalwww.xuanprada.com/blog/2014/11/3/hdri-shooting http://blog.gregzaal.com/2016/03/16/make-your-own-hdri/ http://blog.hdrihaven.com/how-to-create-high-quality-hdri/  Shooting checklist - Full coverage of the scene (fish-eye shots)
- Backplates for look-development (including ground or floor)
- Macbeth chart for white balance
- Grey ball for lighting calibration
- Chrome ball for lighting orientation
- Basic scene measurements
- Material samples
- Individual HDR artificial lighting sources if required
 Methodology (more…)
- 
NVidia DiffusionRenderer – Neural Inverse and Forward Rendering with Video Diffusion Models. How NVIDIA reimagined relightingRead more: NVidia DiffusionRenderer – Neural Inverse and Forward Rendering with Video Diffusion Models. How NVIDIA reimagined relightinghttps://www.fxguide.com/quicktakes/diffusing-reality-how-nvidia-reimagined-relighting/ https://research.nvidia.com/labs/toronto-ai/DiffusionRenderer/ 
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
What the Boeing 737 MAX’s crashes can teach us about production business – the effects of commoditisation
- 
Matt Hallett – WAN 2.1 VACE Total Video Control in ComfyUI
- 
Canva bought Affinity – Now Affinity Photo and Affinity Designer are… GONE?!
- 
N8N.io – From Zero to Your First AI Agent in 25 Minutes
- 
Sensitivity of human eye
- 
Most common ways to smooth 3D prints
- 
Blender VideoDepthAI – Turn any video into 3D Animated Scenes
- 
Embedding frame ranges into Quicktime movies with FFmpeg
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.



























