COMPOSITION
- 
Photography basics: Depth of Field and compositionRead more: Photography basics: Depth of Field and compositionDepth of field is the range within which focusing is resolved in a photo. 
 Aperture has a huge affect on to the depth of field.Changing the f-stops (f/#) of a lens will change aperture and as such the DOF. f-stops are a just certain number which is telling you the size of the aperture. That’s how f-stop is related to aperture (and DOF). If you increase f-stops, it will increase DOF, the area in focus (and decrease the aperture). On the other hand, decreasing the f-stop it will decrease DOF (and increase the aperture). The red cone in the figure is an angular representation of the resolution of the system. Versus the dotted lines, which indicate the aperture coverage. Where the lines of the two cones intersect defines the total range of the depth of field. This image explains why the longer the depth of field, the greater the range of clarity. 
DESIGN
- 
The Hybrids by Phil Langer – hyper-realistic AI-generated human animal portraitsRead more: The Hybrids by Phil Langer – hyper-realistic AI-generated human animal portraitshttps://www.reddit.com/r/aiArt/comments/1azepd6/hybrid_portraits_by_phil_langer/ https://www.thehybridportraits.com/ https://www.instagram.com/hybridportraits/ 
COLOR
- 
No one could see the colour blue until modern timesRead more: No one could see the colour blue until modern timeshttps://www.businessinsider.com/what-is-blue-and-how-do-we-see-color-2015-2  The way humans see the world… until we have a way to describe something, even something so fundamental as a colour, we may not even notice that something it’s there. Ancient languages didn’t have a word for blue — not Greek, not Chinese, not Japanese, not Hebrew, not Icelandic cultures. And without a word for the colour, there’s evidence that they may not have seen it at all. 
 https://www.wnycstudios.org/story/211119-colorsEvery language first had a word for black and for white, or dark and light. The next word for a colour to come into existence — in every language studied around the world — was red, the colour of blood and wine. 
 After red, historically, yellow appears, and later, green (though in a couple of languages, yellow and green switch places). The last of these colours to appear in every language is blue.The only ancient culture to develop a word for blue was the Egyptians — and as it happens, they were also the only culture that had a way to produce a blue dye. 
 https://mymodernmet.com/shades-of-blue-color-history/True blue hues are rare in the natural world because synthesizing pigments that absorb longer-wavelength light (reds and yellows) while reflecting shorter-wavelength blue light requires exceptionally elaborate molecular structures—biochemical feats that most plants and animals simply don’t undertake. When you gaze at a blueberry’s deep blue surface, you’re actually seeing structural coloration rather than a true blue pigment. A fine, waxy bloom on the berry’s skin contains nanostructures that preferentially scatter blue and violet light, giving the fruit its signature blue sheen even though its inherent pigment is reddish. Similarly, many of nature’s most striking blues—like those of blue jays and morpho butterflies—arise not from blue pigments but from microscopic architectures in feathers or wing scales. These tiny ridges and air pockets manipulate incoming light so that blue wavelengths emerge most prominently, creating vivid, angle-dependent colors through scattering rather than pigment alone. (more…)
- 
Is it possible to get a dark yellowRead more: Is it possible to get a dark yellowhttps://www.patreon.com/posts/102660674 https://www.linkedin.com/posts/stephenwestland_here-is-a-post-about-the-dark-yellow-problem-activity-7187131643764092929-7uCL  
- 
Polarised vs unpolarized filteringRead more: Polarised vs unpolarized filteringA light wave that is vibrating in more than one plane is referred to as unpolarized light. … Polarized light waves are light waves in which the vibrations occur in a single plane. The process of transforming unpolarized light into polarized light is known as polarization.  en.wikipedia.org/wiki/Polarizing_filter_(photography) The most common use of polarized technology is to reduce lighting complexity on the subject. (more…)
 Details such as glare and hard edges are not removed, but greatly reduced.
- 
What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?Read more: What Is The Resolution and view coverage Of The human Eye. And what distance is TV at best?https://www.discovery.com/science/mexapixels-in-human-eye About 576 megapixels for the entire field of view. Consider a view in front of you that is 90 degrees by 90 degrees, like looking through an open window at a scene. The number of pixels would be: 
 90 degrees * 60 arc-minutes/degree * 1/0.3 * 90 * 60 * 1/0.3 = 324,000,000 pixels (324 megapixels).At any one moment, you actually do not perceive that many pixels, but your eye moves around the scene to see all the detail you want. But the human eye really sees a larger field of view, close to 180 degrees. Let’s be conservative and use 120 degrees for the field of view. Then we would see: 120 * 120 * 60 * 60 / (0.3 * 0.3) = 576 megapixels. Or. 7 megapixels for the 2 degree focus arc… + 1 megapixel for the rest. https://clarkvision.com/articles/eye-resolution.html Details in the post 
- 
Gamma correctionRead more: Gamma correction http://www.normankoren.com/makingfineprints1A.html#Gammabox https://en.wikipedia.org/wiki/Gamma_correction http://www.photoscientia.co.uk/Gamma.htm https://www.w3.org/Graphics/Color/sRGB.html http://www.eizoglobal.com/library/basics/lcd_display_gamma/index.html https://forum.reallusion.com/PrintTopic308094.aspx Basically, gamma is the relationship between the brightness of a pixel as it appears on the screen, and the numerical value of that pixel. Generally Gamma is just about defining relationships. Three main types: 
 – Image Gamma encoded in images
 – Display Gammas encoded in hardware and/or viewing time
 – System or Viewing Gamma which is the net effect of all gammas when you look back at a final image. In theory this should flatten back to 1.0 gamma.
 (more…)
- 
Scientists claim to have discovered ‘new colour’ no one has seen before: OloRead more: Scientists claim to have discovered ‘new colour’ no one has seen before: Olohttps://www.bbc.com/news/articles/clyq0n3em41o By stimulating specific cells in the retina, the participants claim to have witnessed a blue-green colour that scientists have called “olo”, but some experts have said the existence of a new colour is “open to argument”. The findings, published in the journal Science Advances on Friday, have been described by the study’s co-author, Prof Ren Ng from the University of California, as “remarkable”.  (A) System inputs. (i) Retina map of 103 cone cells preclassified by spectral type (7). (ii) Target visual percept (here, a video of a child, see movie S1 at 1:04). (iii) Infrared cellular-scale imaging of the retina with 60-frames-per-second rolling shutter. Fixational eye movement is visible over the three frames shown. (B) System outputs. (iv) Real-time per-cone target activation levels to reproduce the target percept, computed by: extracting eye motion from the input video relative to the retina map; identifying the spectral type of every cone in the field of view; computing the per-cone activation the target percept would have produced. (v) Intensities of visible-wavelength 488-nm laser microdoses at each cone required to achieve its target activation level. (C) Infrared imaging and visible-wavelength stimulation are physically accomplished in a raster scan across the retinal region using AOSLO. By modulating the visible-wavelength beam’s intensity, the laser microdoses shown in (v) are delivered. Drawing adapted with permission [Harmening and Sincich (54)]. (D) Examples of target percepts with corresponding cone activations and laser microdoses, ranging from colored squares to complex imagery. Teal-striped regions represent the color “olo” of stimulating only M cones. 
- 
Stefan Ringelschwandtner – LUT Inspector toolRead more: Stefan Ringelschwandtner – LUT Inspector toolIt lets you load any .cube LUT right in your browser, see the RGB curves, and use a split view on the Granger Test Image to compare the original vs. LUT-applied version in real time — perfect for spotting hue shifts, saturation changes, and contrast tweaks. https://mononodes.com/lut-inspector/  
- 
Christopher Butler – Understanding the Eye-Mind Connection – Vision is a mental processRead more: Christopher Butler – Understanding the Eye-Mind Connection – Vision is a mental processhttps://www.chrbutler.com/understanding-the-eye-mind-connection The intricate relationship between the eyes and the brain, often termed the eye-mind connection, reveals that vision is predominantly a cognitive process. This understanding has profound implications for fields such as design, where capturing and maintaining attention is paramount. This essay delves into the nuances of visual perception, the brain’s role in interpreting visual data, and how this knowledge can be applied to effective design strategies. This cognitive aspect of vision is evident in phenomena such as optical illusions, where the brain interprets visual information in a way that contradicts physical reality. These illusions underscore that what we “see” is not merely a direct recording of the external world but a constructed experience shaped by cognitive processes. Understanding the cognitive nature of vision is crucial for effective design. Designers must consider how the brain processes visual information to create compelling and engaging visuals. This involves several key principles: - Attention and Engagement
- Visual Hierarchy
- Cognitive Load Management
- Context and Meaning
  
LIGHTING
- 
RawTherapee – a free, open source, cross-platform raw image and HDRi processing programRead more: RawTherapee – a free, open source, cross-platform raw image and HDRi processing program5.10 of this tool includes excellent tools to clean up cr2 and cr3 used on set to support HDRI processing. 
 Converting raw to AcesCG 32 bit tiffs with metadata.
- 
Light and Matter : The 2018 theory of Physically-Based Rendering and Shading by AllegorithmicRead more: Light and Matter : The 2018 theory of Physically-Based Rendering and Shading by Allegorithmicacademy.substance3d.com/courses/the-pbr-guide-part-1 academy.substance3d.com/courses/the-pbr-guide-part-2 Local copy:
 
- 
HDRI Median Cut pluginRead more: HDRI Median Cut pluginwww.hdrlabs.com/picturenaut/plugins.html  Note. The Median Cut algorithm is typically used for color quantization, which involves reducing the number of colors in an image while preserving its visual quality. It doesn’t directly provide a way to identify the brightest areas in an image. However, if you’re interested in identifying the brightest areas, you might want to look into other methods like thresholding, histogram analysis, or edge detection, through openCV for example. Here is an openCV example: (more…)
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
Daniele Tosti Interview for the magazine InCG, Taiwan, Issue 28, 201609
- 
Animation/VFX/Game Industry JOB POSTINGS by Chris Mayne
- 
The Public Domain Is Working Again — No Thanks To Disney
- 
Key/Fill ratios and scene composition using false colors and Nuke node
- 
HDRI Median Cut plugin
- 
GretagMacbeth Color Checker Numeric Values and Middle Gray
- 
Eyeline Labs VChain – Chain-of-Visual-Thought for Reasoning in Video Generation for better AI physics
- 
Convert 2D Images or Text to 3D Models
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.












































