COMPOSITION
DESIGN
COLOR
- 
Is a MacBeth Colour Rendition Chart the Safest Way to Calibrate a Camera?Read more: Is a MacBeth Colour Rendition Chart the Safest Way to Calibrate a Camera?www.colour-science.org/posts/the-colorchecker-considered-mostly-harmless/ “Unless you have all the relevant spectral measurements, a colour rendition chart should not be used to perform colour-correction of camera imagery but only for white balancing and relative exposure adjustments.” “Using a colour rendition chart for colour-correction might dramatically increase error if the scene light source spectrum is different from the illuminant used to compute the colour rendition chart’s reference values.” “other factors make using a colour rendition chart unsuitable for camera calibration: – Uncontrolled geometry of the colour rendition chart with the incident illumination and the camera. 
 – Unknown sample reflectances and ageing as the colour of the samples vary with time.
 – Low samples count.
 – Camera noise and flare.
 – Etc…“Those issues are well understood in the VFX industry, and when receiving plates, we almost exclusively use colour rendition charts to white balance and perform relative exposure adjustments, i.e. plate neutralisation.” 
- 
Victor Perez – ACES Color Management in DaVinci ResolveRead more: Victor Perez – ACES Color Management in DaVinci Resolvehttpv://www.youtube.com/watch?v=i–TS88-6xA 
- 
OLED vs QLED – What TV is better?Read more: OLED vs QLED – What TV is better?Supported by LG, Philips, Panasonic and Sony sell the OLED system TVs. 
 OLED stands for “organic light emitting diode.”
 It is a fundamentally different technology from LCD, the major type of TV today.
 OLED is “emissive,” meaning the pixels emit their own light.Samsung is branding its best TVs with a new acronym: “QLED” 
 QLED (according to Samsung) stands for “quantum dot LED TV.”
 It is a variation of the common LED LCD, adding a quantum dot film to the LCD “sandwich.”
 QLED, like LCD, is, in its current form, “transmissive” and relies on an LED backlight.OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks. QLED, as an improvement over OLED, significantly improves the picture quality. QLED can produce an even wider range of colors than OLED, which says something about this new tech. QLED is also known to produce up to 40% higher luminance efficiency than OLED technology. Further, many tests conclude that QLED is far more efficient in terms of power consumption than its predecessor, OLED. 
 (more…)
- 
The Forbidden colors – Red-Green & Blue-Yellow: The Stunning Colors You Can’t SeeRead more: The Forbidden colors – Red-Green & Blue-Yellow: The Stunning Colors You Can’t Seewww.livescience.com/17948-red-green-blue-yellow-stunning-colors.html  While the human eye has red, green, and blue-sensing cones, those cones are cross-wired in the retina to produce a luminance channel plus a red-green and a blue-yellow channel, and it’s data in that color space (known technically as “LAB”) that goes to the brain. That’s why we can’t perceive a reddish-green or a yellowish-blue, whereas such colors can be represented in the RGB color space used by digital cameras. https://en.rockcontent.com/blog/the-use-of-yellow-in-data-design The back of the retina is covered in light-sensitive neurons known as cone cells and rod cells. There are three types of cone cells, each sensitive to different ranges of light. These ranges overlap, but for convenience the cones are referred to as blue (short-wavelength), green (medium-wavelength), and red (long-wavelength). The rod cells are primarily used in low-light situations, so we’ll ignore those for now. When light enters the eye and hits the cone cells, the cones get excited and send signals to the brain through the visual cortex. Different wavelengths of light excite different combinations of cones to varying levels, which generates our perception of color. You can see that the red cones are most sensitive to light, and the blue cones are least sensitive. The sensitivity of green and red cones overlaps for most of the visible spectrum.  Here’s how your brain takes the signals of light intensity from the cones and turns it into color information. To see red or green, your brain finds the difference between the levels of excitement in your red and green cones. This is the red-green channel. To get “brightness,” your brain combines the excitement of your red and green cones. This creates the luminance, or black-white, channel. To see yellow or blue, your brain then finds the difference between this luminance signal and the excitement of your blue cones. This is the yellow-blue channel. From the calculations made in the brain along those three channels, we get four basic colors: blue, green, yellow, and red. Seeing blue is what you experience when low-wavelength light excites the blue cones more than the green and red. Seeing green happens when light excites the green cones more than the red cones. Seeing red happens when only the red cones are excited by high-wavelength light. Here’s where it gets interesting. Seeing yellow is what happens when BOTH the green AND red cones are highly excited near their peak sensitivity. This is the biggest collective excitement that your cones ever have, aside from seeing pure white. Notice that yellow occurs at peak intensity in the graph to the right. Further, the lens and cornea of the eye happen to block shorter wavelengths, reducing sensitivity to blue and violet light. 
LIGHTING
- 
Narcis Calin’s Galaxy Engine – A free, open source simulation softwareRead more: Narcis Calin’s Galaxy Engine – A free, open source simulation softwareThis 2025 I decided to start learning how to code, so I installed Visual Studio and I started looking into C++. After days of watching tutorials and guides about the basics of C++ and programming, I decided to make something physics-related. I started with a dot that fell to the ground and then I wanted to simulate gravitational attraction, so I made 2 circles attracting each other. I thought it was really cool to see something I made with code actually work, so I kept building on top of that small, basic program. And here we are after roughly 8 months of learning programming. This is Galaxy Engine, and it is a simulation software I have been making ever since I started my learning journey. It currently can simulate gravity, dark matter, galaxies, the Big Bang, temperature, fluid dynamics, breakable solids, planetary interactions, etc. The program can run many tens of thousands of particles in real time on the CPU thanks to the Barnes-Hut algorithm, mixed with Morton curves. It also includes its own PBR 2D path tracer with BVH optimizations. The path tracer can simulate a bunch of stuff like diffuse lighting, specular reflections, refraction, internal reflection, fresnel, emission, dispersion, roughness, IOR, nested IOR and more! I tried to make the path tracer closer to traditional 3D render engines like V-Ray. I honestly never imagined I would go this far with programming, and it has been an amazing learning experience so far. I think that mixing this knowledge with my 3D knowledge can unlock countless new possibilities. In case you are curious about Galaxy Engine, I made it completely free and Open-Source so that anyone can build and compile it locally! You can find the source code in GitHub https://github.com/NarcisCalin/Galaxy-Engine 
- 
The Color of Infinite TemperatureRead more: The Color of Infinite TemperatureThis is the color of something infinitely hot.  Of course you’d instantly be fried by gamma rays of arbitrarily high frequency, but this would be its spectrum in the visible range. johncarlosbaez.wordpress.com/2022/01/16/the-color-of-infinite-temperature/ This is also the color of a typical neutron star. They’re so hot they look the same. 
 It’s also the color of the early Universe!This was worked out by David Madore.  The color he got is sRGB(148,177,255). 
 www.htmlcsscolor.com/hex/94B1FFAnd according to the experts who sip latte all day and make up names for colors, this color is called ‘Perano’. 
- 
Free HDRI librariesRead more: Free HDRI librariesnoahwitchell.com 
 http://www.noahwitchell.com/freebieslocationtextures.com 
 https://locationtextures.com/panoramas/maxroz.com 
 https://www.maxroz.com/hdri/listHDRI Haven 
 https://hdrihaven.com/Poly Haven 
 https://polyhaven.com/hdrisDomeble 
 https://www.domeble.com/IHDRI 
 https://www.ihdri.com/HDRMaps 
 https://hdrmaps.com/NoEmotionHdrs.net 
 http://noemotionhdrs.net/hdrday.htmlOpenFootage.net 
 https://www.openfootage.net/hdri-panorama/HDRI-hub 
 https://www.hdri-hub.com/hdrishop/hdri.zwischendrin 
 https://www.zwischendrin.com/en/browse/hdriLonger list here: https://cgtricks.com/list-sites-free-hdri/ 
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
4dv.ai – Remote Interactive 3D Holographic Presentation Technology and System running on the PlayCanvas engine
- 
3D Gaussian Splatting step by step beginner course
- 
Top 3D Printing Website Resources
- 
Advanced Computer Vision with Python OpenCV and Mediapipe
- 
How does Stable Diffusion work?
- 
FFmpeg – examples and convenience lines
- 
QR code logos
- 
Ethan Roffler interviews CG Supervisor Daniele Tosti
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.








































