COMPOSITION
- 
Composition – cinematography Cheat SheetRead more: Composition – cinematography Cheat Sheet Where is our eye attracted first? Why? Size. Focus. Lighting. Color. Size. Mr. White (Harvey Keitel) on the right. 
 Focus. He’s one of the two objects in focus.
 Lighting. Mr. White is large and in focus and Mr. Pink (Steve Buscemi) is highlighted by
 a shaft of light.
 Color. Both are black and white but the read on Mr. White’s shirt now really stands out.
 (more…)
 What type of lighting?
- 
Cinematographers Blueprint 300dpi posterRead more: Cinematographers Blueprint 300dpi posterThe 300dpi digital poster is now available to all PixelSham.com subscribers. If you have already subscribed and wish a copy, please send me a note through the contact page. 
- 
StudioBinder – Roger Deakins on How to Choose a Camera Lens — Cinematography Composition TechniquesRead more: StudioBinder – Roger Deakins on How to Choose a Camera Lens — Cinematography Composition Techniqueshttps://www.studiobinder.com/blog/camera-lens-buying-guide/ https://www.studiobinder.com/blog/e-books/camera-lenses-explained-volume-1-ebook 
DESIGN
- 
Myriam Catrin – amazing designRead more: Myriam Catrin – amazing designhttps://www.artstation.com/myriamcatrin Creator of the comic book ” Passages. Book I” released with @therealarttitude https://arttitudebootleg.bigcartel.com/product/passages-myriam-catrin instagram/ FB page: @myriamcatrin / @MyriamCatrinComics 
- 
How to paint a boardgame miniaturesRead more: How to paint a boardgame miniaturesSteps: - soap wash cleaning
- primer
- base-coat layer (black/white)
- detailing
- washing aka shade (could be done after highlighting)
- highlights aka dry brushing (could be done after washing)
- varnish (gloss/satin/matte)
 
COLOR
- 
“Reality” is constructed by your brain. Here’s what that means, and why it matters.Read more: “Reality” is constructed by your brain. Here’s what that means, and why it matters.“Fix your gaze on the black dot on the left side of this image. But wait! Finish reading this paragraph first. As you gaze at the left dot, try to answer this question: In what direction is the object on the right moving? Is it drifting diagonally, or is it moving up and down?”  What color are these strawberries?  Are A and B the same gray?  
- 
Space bodies’ components and light spectroscopyRead more: Space bodies’ components and light spectroscopywww.plutorules.com/page-111-space-rocks.html This help’s us understand the composition of components in/on solar system bodies. Dips in the observed light spectrum, also known as, lines of absorption occur as gasses absorb energy from light at specific points along the light spectrum. These dips or darkened zones (lines of absorption) leave a finger print which identify elements and compounds. In this image the dark absorption bands appear as lines of emission which occur as the result of emitted not reflected (absorbed) light. Lines of absorption  Lines of emission Lines of emission    
- 
Colour – MacBeth Chart Checker DetectionRead more: Colour – MacBeth Chart Checker Detectiongithub.com/colour-science/colour-checker-detection A Python package implementing various colour checker detection algorithms and related utilities.  
LIGHTING
- 
Rendering – BRDF – Bidirectional reflectance distribution functionRead more: Rendering – BRDF – Bidirectional reflectance distribution functionhttp://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function The bidirectional reflectance distribution function is a four-dimensional function that defines how light is reflected at an opaque surface http://www.cs.ucla.edu/~zhu/tutorial/An_Introduction_to_BRDF-Based_Lighting.pdf In general, when light interacts with matter, a complicated light-matter dynamic occurs. This interaction depends on the physical characteristics of the light as well as the physical composition and characteristics of the matter. That is, some of the incident light is reflected, some of the light is transmitted, and another portion of the light is absorbed by the medium itself. A BRDF describes how much light is reflected when light makes contact with a certain material. Similarly, a BTDF (Bi-directional Transmission Distribution Function) describes how much light is transmitted when light makes contact with a certain material http://www.cs.princeton.edu/~smr/cs348c-97/surveypaper.html It is difficult to establish exactly how far one should go in elaborating the surface model. A truly complete representation of the reflective behavior of a surface might take into account such phenomena as polarization, scattering, fluorescence, and phosphorescence, all of which might vary with position on the surface. Therefore, the variables in this complete function would be: incoming and outgoing angle incoming and outgoing wavelength incoming and outgoing polarization (both linear and circular) incoming and outgoing position (which might differ due to subsurface scattering) time delay between the incoming and outgoing light ray 
- 
What is physically correct lighting all about?Read more: What is physically correct lighting all about?http://gamedev.stackexchange.com/questions/60638/what-is-physically-correct-lighting-all-about 2012-08 Nathan Reed wrote: Physically-based shading means leaving behind phenomenological models, like the Phong shading model, which are simply built to “look good” subjectively without being based on physics in any real way, and moving to lighting and shading models that are derived from the laws of physics and/or from actual measurements of the real world, and rigorously obey physical constraints such as energy conservation. For example, in many older rendering systems, shading models included separate controls for specular highlights from point lights and reflection of the environment via a cubemap. You could create a shader with the specular and the reflection set to wildly different values, even though those are both instances of the same physical process. In addition, you could set the specular to any arbitrary brightness, even if it would cause the surface to reflect more energy than it actually received. In a physically-based system, both the point light specular and the environment reflection would be controlled by the same parameter, and the system would be set up to automatically adjust the brightness of both the specular and diffuse components to maintain overall energy conservation. Moreover you would want to set the specular brightness to a realistic value for the material you’re trying to simulate, based on measurements. Physically-based lighting or shading includes physically-based BRDFs, which are usually based on microfacet theory, and physically correct light transport, which is based on the rendering equation (although heavily approximated in the case of real-time games). It also includes the necessary changes in the art process to make use of these features. Switching to a physically-based system can cause some upsets for artists. First of all it requires full HDR lighting with a realistic level of brightness for light sources, the sky, etc. and this can take some getting used to for the lighting artists. It also requires texture/material artists to do some things differently (particularly for specular), and they can be frustrated by the apparent loss of control (e.g. locking together the specular highlight and environment reflection as mentioned above; artists will complain about this). They will need some time and guidance to adapt to the physically-based system. On the plus side, once artists have adapted and gained trust in the physically-based system, they usually end up liking it better, because there are fewer parameters overall (less work for them to tweak). Also, materials created in one lighting environment generally look fine in other lighting environments too. This is unlike more ad-hoc models, where a set of material parameters might look good during daytime, but it comes out ridiculously glowy at night, or something like that. Here are some resources to look at for physically-based lighting in games: SIGGRAPH 2013 Physically Based Shading Course, particularly the background talk by Naty Hoffman at the beginning. You can also check out the previous incarnations of this course for more resources. Sébastien Lagarde, Adopting a physically-based shading model and Feeding a physically-based shading model And of course, I would be remiss if I didn’t mention Physically-Based Rendering by Pharr and Humphreys, an amazing reference on this whole subject and well worth your time, although it focuses on offline rather than real-time rendering. 
- 
Fast, optimized ‘for’ pixel loops with OpenCV and Python to create tone mapped HDR imagesRead more: Fast, optimized ‘for’ pixel loops with OpenCV and Python to create tone mapped HDR imageshttps://pyimagesearch.com/2017/08/28/fast-optimized-for-pixel-loops-with-opencv-and-python/ https://learnopencv.com/exposure-fusion-using-opencv-cpp-python/ Exposure Fusion is a method for combining images taken with different exposure settings into one image that looks like a tone mapped High Dynamic Range (HDR) image. 
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
MiniTunes V1 – Free MP3 library app
- 
HDRI Median Cut plugin
- 
Python and TCL: Tips and Tricks for Foundry Nuke
- 
NVidia – High-Fidelity 3D Mesh Generation at Scale with Meshtron
- 
Tencent Hunyuan3D 2.1 goes Open Source and adds MV (Multi-view) and MV Mini
- 
Advanced Computer Vision with Python OpenCV and Mediapipe
- 
Yann Lecun: Meta AI, Open Source, Limits of LLMs, AGI & the Future of AI | Lex Fridman Podcast #416
- 
How do LLMs like ChatGPT (Generative Pre-Trained Transformer) work? Explained by Deep-Fake Ryan Gosling
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.





























