COMPOSITION
DESIGN
COLOR
- 
Space bodies’ components and light spectroscopyRead more: Space bodies’ components and light spectroscopywww.plutorules.com/page-111-space-rocks.html This help’s us understand the composition of components in/on solar system bodies. Dips in the observed light spectrum, also known as, lines of absorption occur as gasses absorb energy from light at specific points along the light spectrum. These dips or darkened zones (lines of absorption) leave a finger print which identify elements and compounds. In this image the dark absorption bands appear as lines of emission which occur as the result of emitted not reflected (absorbed) light. Lines of absorption  Lines of emission Lines of emission    
- 
sRGB vs REC709 – An introduction and FFmpeg implementationsRead more: sRGB vs REC709 – An introduction and FFmpeg implementations 1. Basic Comparison- What they are
- sRGB: A standard “web”/computer-display RGB color space defined by IEC 61966-2-1. It’s used for most monitors, cameras, printers, and the vast majority of images on the Internet.
- Rec. 709: An HD-video color space defined by ITU-R BT.709. It’s the go-to standard for HDTV broadcasts, Blu-ray discs, and professional video pipelines.
 
- Why they exist
- sRGB: Ensures consistent colors across different consumer devices (PCs, phones, webcams).
- Rec. 709: Ensures consistent colors across video production and playback chains (cameras → editing → broadcast → TV).
 
- What you’ll see
- On your desktop or phone, images tagged sRGB will look “right” without extra tweaking.
- On an HDTV or video-editing timeline, footage tagged Rec. 709 will display accurate contrast and hue on broadcast-grade monitors.
 
 
 2. Digging DeeperFeature sRGB Rec. 709 White point D65 (6504 K), same for both D65 (6504 K) Primaries (x,y) R: (0.640, 0.330) G: (0.300, 0.600) B: (0.150, 0.060) R: (0.640, 0.330) G: (0.300, 0.600) B: (0.150, 0.060) Gamut size Identical triangle on CIE 1931 chart Identical to sRGB Gamma / transfer Piecewise curve: approximate 2.2 with linear toe Pure power-law γ≈2.4 (often approximated as 2.2 in practice) Matrix coefficients N/A (pure RGB usage) Y = 0.2126 R + 0.7152 G + 0.0722 B (Rec. 709 matrix) Typical bit-depth 8-bit/channel (with 16-bit variants) 8-bit/channel (10-bit for professional video) Usage metadata Tagged as “sRGB” in image files (PNG, JPEG, etc.) Tagged as “bt709” in video containers (MP4, MOV) Color range Full-range RGB (0–255) Studio-range Y′CbCr (Y′ [16–235], Cb/Cr [16–240]) 
 Why the Small Differences Matter(more…)
- What they are
- 
HDR and ColorRead more: HDR and Colorhttps://www.soundandvision.com/content/nits-and-bits-hdr-and-color In HD we often refer to the range of available colors as a color gamut. Such a color gamut is typically plotted on a two-dimensional diagram, called a CIE chart, as shown in at the top of this blog. Each color is characterized by its x/y coordinates. Good enough for government work, perhaps. But for HDR, with its higher luminance levels and wider color, the gamut becomes three-dimensional. For HDR the color gamut therefore becomes a characteristic we now call the color volume. It isn’t easy to show color volume on a two-dimensional medium like the printed page or a computer screen, but one method is shown below. As the luminance becomes higher, the picture eventually turns to white. As it becomes darker, it fades to black. The traditional color gamut shown on the CIE chart is simply a slice through this color volume at a selected luminance level, such as 50%. Three different color volumes—we still refer to them as color gamuts though their third dimension is important—are currently the most significant. The first is BT.709 (sometimes referred to as Rec.709), the color gamut used for pre-UHD/HDR formats, including standard HD. The largest is known as BT.2020; it encompasses (roughly) the range of colors visible to the human eye (though ET might find it insufficient!). Between these two is the color gamut used in digital cinema, known as DCI-P3. sRGB 
  D65 
  
- 
Is a MacBeth Colour Rendition Chart the Safest Way to Calibrate a Camera?Read more: Is a MacBeth Colour Rendition Chart the Safest Way to Calibrate a Camera?www.colour-science.org/posts/the-colorchecker-considered-mostly-harmless/ “Unless you have all the relevant spectral measurements, a colour rendition chart should not be used to perform colour-correction of camera imagery but only for white balancing and relative exposure adjustments.” “Using a colour rendition chart for colour-correction might dramatically increase error if the scene light source spectrum is different from the illuminant used to compute the colour rendition chart’s reference values.” “other factors make using a colour rendition chart unsuitable for camera calibration: – Uncontrolled geometry of the colour rendition chart with the incident illumination and the camera. 
 – Unknown sample reflectances and ageing as the colour of the samples vary with time.
 – Low samples count.
 – Camera noise and flare.
 – Etc…“Those issues are well understood in the VFX industry, and when receiving plates, we almost exclusively use colour rendition charts to white balance and perform relative exposure adjustments, i.e. plate neutralisation.” 
- 
mmColorTarget – Nuke Gizmo for color matching a MacBeth chartRead more: mmColorTarget – Nuke Gizmo for color matching a MacBeth charthttps://www.marcomeyer-vfx.de/posts/2014-04-11-mmcolortarget-nuke-gizmo/ https://www.marcomeyer-vfx.de/posts/mmcolortarget-nuke-gizmo/ https://vimeo.com/9.1652466e+07 https://www.nukepedia.com/gizmos/colour/mmcolortarget 
- 
What causes colorRead more: What causes colorwww.webexhibits.org/causesofcolor/5.html Water itself has an intrinsic blue color that is a result of its molecular structure and its behavior.  
- 
The Maya civilization and the color blueRead more: The Maya civilization and the color blueMaya blue is a highly unusual pigment because it is a mix of organic indigo and an inorganic clay mineral called palygorskite. 
 Echoing the color of an azure sky, the indelible pigment was used to accentuate everything from ceramics to human sacrifices in the Late Preclassic period (300 B.C. to A.D. 300).
 A team of researchers led by Dean Arnold, an adjunct curator of anthropology at the Field Museum in Chicago, determined that the key to Maya blue was actually a sacred incense called copal.
 By heating the mixture of indigo, copal and palygorskite over a fire, the Maya produced the unique pigment, he reported at the time. 
LIGHTING
- 
Lighting Every Darkness with 3DGS: Fast Training and Real-Time Rendering and Denoising for HDR View SynthesisRead more: Lighting Every Darkness with 3DGS: Fast Training and Real-Time Rendering and Denoising for HDR View Synthesishttps://srameo.github.io/projects/le3d/ LE3D is a method for real-time HDR view synthesis from RAW images. It is particularly effective for nighttime scenes. https://github.com/Srameo/LE3D 
- 
Light propertiesRead more: Light propertiesHow It Works – Issue 114 
 https://www.howitworksdaily.com/
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
Black Body color aka the Planckian Locus curve for white point eye perception
- 
Cinematographers Blueprint 300dpi poster
- 
The Perils of Technical Debt – Understanding Its Impact on Security, Usability, and Stability
- 
Daniele Tosti Interview for the magazine InCG, Taiwan, Issue 28, 201609
- 
Zibra.AI – Real-Time Volumetric Effects in Virtual Production. Now free for Indies!
- 
Free fonts
- 
Convert 2D Images or Text to 3D Models
- 
Black Forest Labs released FLUX.1 Kontext
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.


























![sRGB gamma correction test [gamma correction test]](http://www.madore.org/~david/misc/color/gammatest.png)






