COMPOSITION
- 
Cinematographers Blueprint 300dpi posterRead more: Cinematographers Blueprint 300dpi posterThe 300dpi digital poster is now available to all PixelSham.com subscribers. If you have already subscribed and wish a copy, please send me a note through the contact page. 
DESIGN
COLOR
- 
OLED vs QLED – What TV is better?Read more: OLED vs QLED – What TV is better?Supported by LG, Philips, Panasonic and Sony sell the OLED system TVs. 
 OLED stands for “organic light emitting diode.”
 It is a fundamentally different technology from LCD, the major type of TV today.
 OLED is “emissive,” meaning the pixels emit their own light.Samsung is branding its best TVs with a new acronym: “QLED” 
 QLED (according to Samsung) stands for “quantum dot LED TV.”
 It is a variation of the common LED LCD, adding a quantum dot film to the LCD “sandwich.”
 QLED, like LCD, is, in its current form, “transmissive” and relies on an LED backlight.OLED is the only technology capable of absolute blacks and extremely bright whites on a per-pixel basis. LCD definitely can’t do that, and even the vaunted, beloved, dearly departed plasma couldn’t do absolute blacks. QLED, as an improvement over OLED, significantly improves the picture quality. QLED can produce an even wider range of colors than OLED, which says something about this new tech. QLED is also known to produce up to 40% higher luminance efficiency than OLED technology. Further, many tests conclude that QLED is far more efficient in terms of power consumption than its predecessor, OLED. 
 (more…)
- 
Tim Kang – calibrated white light values in sRGB color spaceRead more: Tim Kang – calibrated white light values in sRGB color space8bit sRGB encoded 
 2000K 255 139 22
 2700K 255 172 89
 3000K 255 184 109
 3200K 255 190 122
 4000K 255 211 165
 4300K 255 219 178
 D50 255 235 205
 D55 255 243 224
 D5600 255 244 227
 D6000 255 249 240
 D65 255 255 255
 D10000 202 221 255
 D20000 166 196 2558bit Rec709 Gamma 2.4 
 2000K 255 145 34
 2700K 255 177 97
 3000K 255 187 117
 3200K 255 193 129
 4000K 255 214 170
 4300K 255 221 182
 D50 255 236 208
 D55 255 243 226
 D5600 255 245 229
 D6000 255 250 241
 D65 255 255 255
 D10000 204 222 255
 D20000 170 199 2558bit Display P3 encoded 
 2000K 255 154 63
 2700K 255 185 109
 3000K 255 195 127
 3200K 255 201 138
 4000K 255 219 176
 4300K 255 225 187
 D50 255 239 212
 D55 255 245 228
 D5600 255 246 231
 D6000 255 251 242
 D65 255 255 255
 D10000 208 223 255
 D20000 175 199 25510bit Rec2020 PQ (100 nits) 
 2000K 520 435 273
 2700K 520 466 358
 3000K 520 475 384
 3200K 520 480 399
 4000K 520 495 446
 4300K 520 500 458
 D50 520 510 482
 D55 520 514 497
 D5600 520 514 500
 D6000 520 517 509
 D65 520 520 520
 D10000 479 489 520
 D20000 448 464 520
- 
Victor Perez – The Color Management Handbook for Visual Effects ArtistsRead more: Victor Perez – The Color Management Handbook for Visual Effects ArtistsDigital Color Principles, Color Management Fundamentals & ACES Workflows 
- 
Is a MacBeth Colour Rendition Chart the Safest Way to Calibrate a Camera?Read more: Is a MacBeth Colour Rendition Chart the Safest Way to Calibrate a Camera?www.colour-science.org/posts/the-colorchecker-considered-mostly-harmless/ “Unless you have all the relevant spectral measurements, a colour rendition chart should not be used to perform colour-correction of camera imagery but only for white balancing and relative exposure adjustments.” “Using a colour rendition chart for colour-correction might dramatically increase error if the scene light source spectrum is different from the illuminant used to compute the colour rendition chart’s reference values.” “other factors make using a colour rendition chart unsuitable for camera calibration: – Uncontrolled geometry of the colour rendition chart with the incident illumination and the camera. 
 – Unknown sample reflectances and ageing as the colour of the samples vary with time.
 – Low samples count.
 – Camera noise and flare.
 – Etc…“Those issues are well understood in the VFX industry, and when receiving plates, we almost exclusively use colour rendition charts to white balance and perform relative exposure adjustments, i.e. plate neutralisation.” 
LIGHTING
- 
Light and Matter : The 2018 theory of Physically-Based Rendering and Shading by AllegorithmicRead more: Light and Matter : The 2018 theory of Physically-Based Rendering and Shading by Allegorithmicacademy.substance3d.com/courses/the-pbr-guide-part-1 academy.substance3d.com/courses/the-pbr-guide-part-2 Local copy:
 
- 
Photography basics: Solid Angle measuresRead more: Photography basics: Solid Angle measureshttp://www.calculator.org/property.aspx?name=solid+angle A measure of how large the object appears to an observer looking from that point. Thus. A measure for objects in the sky. Useful to retuen the size of the sun and moon… and in perspective, how much of their contribution to lighting. Solid angle can be represented in ‘angular diameter’ as well. http://en.wikipedia.org/wiki/Solid_angle http://www.mathsisfun.com/geometry/steradian.html A solid angle is expressed in a dimensionless unit called a steradian (symbol: sr). By default in terms of the total celestial sphere and before atmospheric’s scattering, the Sun and the Moon subtend fractional areas of 0.000546% (Sun) and 0.000531% (Moon). http://en.wikipedia.org/wiki/Solid_angle#Sun_and_Moon On earth the sun is likely closer to 0.00011 solid angle after athmospheric scattering. The sun as perceived from earth has a diameter of 0.53 degrees. This is about 0.000064 solid angle. http://www.numericana.com/answer/angles.htm The mean angular diameter of the full moon is 2q = 0.52° (it varies with time around that average, by about 0.009°). This translates into a solid angle of 0.0000647 sr, which means that the whole night sky covers a solid angle roughly one hundred thousand times greater than the full moon. More info http://lcogt.net/spacebook/using-angles-describe-positions-and-apparent-sizes-objects http://amazing-space.stsci.edu/glossary/def.php.s=topic_astronomy Angular Size The apparent size of an object as seen by an observer; expressed in units of degrees (of arc), arc minutes, or arc seconds. The moon, as viewed from the Earth, has an angular diameter of one-half a degree. The angle covered by the diameter of the full moon is about 31 arcmin or 1/2°, so astronomers would say the Moon’s angular diameter is 31 arcmin, or the Moon subtends an angle of 31 arcmin. 
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
Photography basics: Shutter angle and shutter speed and motion blur
- 
Photography basics: Color Temperature and White Balance
- 
Scene Referred vs Display Referred color workflows
- 
The Perils of Technical Debt – Understanding Its Impact on Security, Usability, and Stability
- 
What the Boeing 737 MAX’s crashes can teach us about production business – the effects of commoditisation
- 
AnimationXpress.com interviews Daniele Tosti for TheCgCareer.com channel
- 
How does Stable Diffusion work?
- 
copypastecharacter.com – alphabets, special characters, alt codes and symbols library
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.

























 
 









