COMPOSITION
- 
Composition – 5 tips for creating perfect cinematic lighting and making your work look stunningRead more: Composition – 5 tips for creating perfect cinematic lighting and making your work look stunninghttp://www.diyphotography.net/5-tips-creating-perfect-cinematic-lighting-making-work-look-stunning/ 1. Learn the rules of lighting 2. Learn when to break the rules 3. Make your key light larger 4. Reverse keying 5. Always be backlighting 
- 
7 Commandments of Film Editing and compositionRead more: 7 Commandments of Film Editing and composition1. Watch every frame of raw footage twice. On the second time, take notes. If you don’t do this and try to start developing a scene premature, then it’s a big disservice to yourself and to the director, actors and production crew. 2. Nurture the relationships with the director. You are the secondary person in the relationship. Be calm and continually offer solutions. Get the main intention of the film as soon as possible from the director. 3. Organize your media so that you can find any shot instantly. 4. Factor in extra time for renders, exports, errors and crashes. 5. Attempt edits and ideas that shouldn’t work. It just might work. Until you do it and watch it, you won’t know. Don’t rule out ideas just because they don’t make sense in your mind. 6. Spend more time on your audio. It’s the glue of your edit. AUDIO SAVES EVERYTHING. Create fluid and seamless audio under your video. 7. Make cuts for the scene, but always in context for the whole film. Have a macro and a micro view at all times. 
DESIGN
COLOR
- 
3D Lighting Tutorial by Amaan KramRead more: 3D Lighting Tutorial by Amaan Kramhttp://www.amaanakram.com/lightingT/part1.htm The goals of lighting in 3D computer graphics are more or less the same as those of real world lighting. Lighting serves a basic function of bringing out, or pushing back the shapes of objects visible from the camera’s view. 
 It gives a two-dimensional image on the monitor an illusion of the third dimension-depth.But it does not just stop there. It gives an image its personality, its character. A scene lit in different ways can give a feeling of happiness, of sorrow, of fear etc., and it can do so in dramatic or subtle ways. Along with personality and character, lighting fills a scene with emotion that is directly transmitted to the viewer. Trying to simulate a real environment in an artificial one can be a daunting task. But even if you make your 3D rendering look absolutely photo-realistic, it doesn’t guarantee that the image carries enough emotion to elicit a “wow” from the people viewing it. Making 3D renderings photo-realistic can be hard. Putting deep emotions in them can be even harder. However, if you plan out your lighting strategy for the mood and emotion that you want your rendering to express, you make the process easier for yourself. Each light source can be broken down in to 4 distinct components and analyzed accordingly. · Intensity 
 · Direction
 · Color
 · SizeThe overall thrust of this writing is to produce photo-realistic images by applying good lighting techniques. 
- 
Björn Ottosson – How software gets color wrongRead more: Björn Ottosson – How software gets color wronghttps://bottosson.github.io/posts/colorwrong/ Most software around us today are decent at accurately displaying colors. Processing of colors is another story unfortunately, and is often done badly. To understand what the problem is, let’s start with an example of three ways of blending green and magenta: - Perceptual blend – A smooth transition using a model designed to mimic human perception of color. The blending is done so that the perceived brightness and color varies smoothly and evenly.
- Linear blend – A model for blending color based on how light behaves physically. This type of blending can occur in many ways naturally, for example when colors are blended together by focus blur in a camera or when viewing a pattern of two colors at a distance.
- sRGB blend – This is how colors would normally be blended in computer software, using sRGB to represent the colors.
 Let’s look at some more examples of blending of colors, to see how these problems surface more practically. The examples use strong colors since then the differences are more pronounced. This is using the same three ways of blending colors as the first example. Instead of making it as easy as possible to work with color, most software make it unnecessarily hard, by doing image processing with representations not designed for it. Approximating the physical behavior of light with linear RGB models is one easy thing to do, but more work is needed to create image representations tailored for image processing and human perception. Also see: 
- 
Björn Ottosson – OKlch color spaceRead more: Björn Ottosson – OKlch color spaceBjörn Ottosson proposed OKlch in 2020 to create a color space that can closely mimic how color is perceived by the human eye, predicting perceived lightness, chroma, and hue. The OK in OKLCH stands for Optimal Color. - L: Lightness (the perceived brightness of the color)
- C: Chroma (the intensity or saturation of the color)
- H: Hue (the actual color, such as red, blue, green, etc.)
  Also read: 
- 
Mysterious animation wins best illusion of 2011 – Motion silencing illusionRead more: Mysterious animation wins best illusion of 2011 – Motion silencing illusionThe 2011 Best Illusion of the Year uses motion to render color changes invisible, and so reveals a quirk in our visual systems that is new to scientists. https://en.wikipedia.org/wiki/Motion_silencing_illusion “It is a really beautiful effect, revealing something about how our visual system works that we didn’t know before,” said Daniel Simons, a professor at the University of Illinois, Champaign-Urbana. Simons studies visual cognition, and did not work on this illusion. Before its creation, scientists didn’t know that motion had this effect on perception, Simons said. A viewer stares at a speck at the center of a ring of colored dots, which continuously change color. When the ring begins to rotate around the speck, the color changes appear to stop. But this is an illusion. For some reason, the motion causes our visual system to ignore the color changes. (You can, however, see the color changes if you follow the rotating circles with your eyes.) 
LIGHTING
- 
ICLight – Krea and ComfyUI light editingRead more: ICLight – Krea and ComfyUI light editinghttps://drive.google.com/drive/folders/16Aq1mqZKP-h8vApaN4FX5at3acidqPUv https://github.com/lllyasviel/IC-Light https://generativematte.blogspot.com/2025/03/comfyui-ic-light-relighting-exploration.html  Workflow Local copy  
- 
3D Lighting Tutorial by Amaan KramRead more: 3D Lighting Tutorial by Amaan Kramhttp://www.amaanakram.com/lightingT/part1.htm The goals of lighting in 3D computer graphics are more or less the same as those of real world lighting. Lighting serves a basic function of bringing out, or pushing back the shapes of objects visible from the camera’s view. 
 It gives a two-dimensional image on the monitor an illusion of the third dimension-depth.But it does not just stop there. It gives an image its personality, its character. A scene lit in different ways can give a feeling of happiness, of sorrow, of fear etc., and it can do so in dramatic or subtle ways. Along with personality and character, lighting fills a scene with emotion that is directly transmitted to the viewer. Trying to simulate a real environment in an artificial one can be a daunting task. But even if you make your 3D rendering look absolutely photo-realistic, it doesn’t guarantee that the image carries enough emotion to elicit a “wow” from the people viewing it. Making 3D renderings photo-realistic can be hard. Putting deep emotions in them can be even harder. However, if you plan out your lighting strategy for the mood and emotion that you want your rendering to express, you make the process easier for yourself. Each light source can be broken down in to 4 distinct components and analyzed accordingly. · Intensity 
 · Direction
 · Color
 · SizeThe overall thrust of this writing is to produce photo-realistic images by applying good lighting techniques. 
- 
Sun cone angle (angular diameter) as perceived by earth viewersRead more: Sun cone angle (angular diameter) as perceived by earth viewersAlso see: https://www.pixelsham.com/2020/08/01/solid-angle-measures/ The cone angle of the sun refers to the angular diameter of the sun as observed from Earth, which is related to the apparent size of the sun in the sky. The angular diameter of the sun, or the cone angle of the sunlight as perceived from Earth, is approximately 0.53 degrees on average. This value can vary slightly due to the elliptical nature of Earth’s orbit around the sun, but it generally stays within a narrow range. Here’s a more precise breakdown: - 
- Average Angular Diameter: About 0.53 degrees (31 arcminutes)
- Minimum Angular Diameter: Approximately 0.52 degrees (when Earth is at aphelion, the farthest point from the sun)
- Maximum Angular Diameter: Approximately 0.54 degrees (when Earth is at perihelion, the closest point to the sun)
 
 This angular diameter remains relatively constant throughout the day because the sun’s distance from Earth does not change significantly over a single day. To summarize, the cone angle of the sun’s light, or its angular diameter, is typically around 0.53 degrees, regardless of the time of day. https://en.wikipedia.org/wiki/Angular_diameter 
- 
COLLECTIONS
| Featured AI
| Design And Composition 
| Explore posts  
POPULAR SEARCHES
unreal | pipeline | virtual production | free | learn | photoshop | 360 | macro | google | nvidia | resolution | open source | hdri | real-time | photography basics | nuke
FEATURED POSTS
- 
Black Forest Labs released FLUX.1 Kontext
- 
Daniele Tosti Interview for the magazine InCG, Taiwan, Issue 28, 201609
- 
Photography basics: Lumens vs Candelas (candle) vs Lux vs FootCandle vs Watts vs Irradiance vs Illuminance
- 
AI and the Law – Netflix : Using Generative AI in Content Production
- 
Embedding frame ranges into Quicktime movies with FFmpeg
- 
NVidia – High-Fidelity 3D Mesh Generation at Scale with Meshtron
- 
What the Boeing 737 MAX’s crashes can teach us about production business – the effects of commoditisation
- 
Photography basics: Production Rendering Resolution Charts
Social Links
DISCLAIMER – Links and images on this website may be protected by the respective owners’ copyright. All data submitted by users through this site shall be treated as freely available to share.
































 
 

















